UNIVERSITY OF SURREY[©]

B. Sc. Honours Courses in Mathematical Studies

Level HE3 Examination

Module MS331 BAYESIAN STATISTICS

Time allowed - 2 hours

Autumn Semester 2005

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account. A formula sheet and Cambridge Statistical Tables will be provided.

SEE NEXT PAGE

Question 1

(a) The lifetime T of a certain aircraft component follows a Weibull distribution with distribution function given by

$$F(t) = 1 - \exp(-\lambda t^{\gamma})$$

where $\lambda > 0$, $\gamma > 0$ are unknown parameters. Obtain the density function of T.

- (b) A number of n components were put on test and failed at times t_1, t_2, \ldots, t_n . Find the likelihood function. [3]
- (c) Assume that λ and γ are *a priori* independent. The prior density $p(\gamma)$ for γ is not specified, but the improper prior density $p(\lambda) \propto \lambda^{-1}$ is adopted for λ . Obtain the form of the marginal posterior density for γ . (Do not attempt to evaluate the constant of proportionality.) [7]
- (d) Assume now that γ is known. Obtain the posterior distribution of λ . Suppose that the parameter of interest is the median lifetime, θ . Show that

$$\theta = \left(\lambda^{-1}\log 2\right)^{1/2}$$

and hence find the posterior mean of θ as a function of γ .

Question 2

- (a) A series of *n* independent trials have outcomes y_1, y_2, \ldots, y_n , where $y_i = 1$ if trial *i* results in a success, and $y_i = 0$ otherwise. Suppose that the constant chance of success in these trials is θ . If the prior distribution for θ is Beta with parameters *a* and *b*, obtain the posterior distribution of θ .
- (b) Obtain the joint predictive distribution of the results y_{n+1} , y_{n+2} of the next two trials in the series. Deduce that the predictive probability π that both trials result in a failure is given by

$$\pi = \frac{(b+n-r+1)(b+n-r)}{(a+b+n+1)(a+b+n)}$$

where r is the number of successes in the first n trials.

(c) If r = 3 and n = 10, calculate π using

SEE NEXT PAGE

[13]

[9]

[9]

[2]

- (i) a = b = 2,
- (ii) a = b = 0.

Also calculate π in both of these cases if r = 30 and n = 100. Comment carefully on your answers.

Question 3

- (a) Define the term sufficient statistic as applied to the family $p(\underline{x}|\theta)$. Show that if $t(\underline{x})$ is sufficient for the family $p(\underline{x}|\theta)$ then for any prior distribution, the posterior distributions of θ given \underline{x} and $t(\underline{x})$ are the same. [6]
- (b) Suppose x_1, x_2, \ldots, x_n is a random sample from a Normal distribution with known mean μ and unknown precision θ . If the prior distribution for θ is gamma, $Ga\left(\frac{a}{2}, \frac{b}{2}\right)$, find the posterior distribution of θ and deduce that the posterior distribution for θ depends on the data only though $\sum (x_i \mu)^2$.

Find the posterior mean and variance of θ .

Show that the posterior mean can be written as a weighted average of the prior mean and the maximum likelihood estimator $\hat{\theta}$ of θ , where

$$\hat{\theta} = \frac{n}{\sum (x_i - \mu)^2}.$$
[6]

(c) If $\sum (x_i - \mu)^2 = 1$, a = 12, b = 4 and n = 4, find a 95% credible interval for θ . [You may use the fact that if $X \sim Ga\left(\frac{a}{2}, \frac{b}{2}\right)$, then $bX \sim \chi_a^2$.] [5]

Question 4

(a) A three stage linear model is given by

$$\underline{\underline{y}} | \underline{\theta}_1 \sim N(A_1 \underline{\theta}_1, C_1)$$

$$\underline{\theta}_1 | \underline{\theta}_2 \sim N(A_2 \underline{\theta}_2, C_2)$$

$$\underline{\theta}_2 \sim N(\mu, C_3)$$

where $\underline{y} = (y_1, y_2, \dots, y_n)^T$, $\underline{\theta}_1$ and $\underline{\theta}_2$ are both vectors of parameters of length p_1 and p_2 respectively, A_1 is an $n \times p_1$ matrix, A_2 is a $p_1 \times p_2$ matrix, C_1 is an $n \times n$ variance-covariance matrix, C_2 is a $p_1 \times p_1$ variancecovariance matrix, C_3 is a $p_2 \times p_2$ variance-covariance matrix and $\underline{\mu}$ is a p_2 dimensional vector. A_1, A_2, C_1, C_2, C_3 and $\underline{\mu}$ are known.

SEE NEXT PAGE

[5] [3]

[7]

With vague prior information i.e. $C_3^{-1} \to 0$, the posterior distribution of $\underline{\theta}_1 | y$ is $N(D_0 \underline{d}_0, D_0)$ where

$$D_0^{-1} = A_1^T C_1^{-1} A_1 + C_2^{-1} - C_2^{-1} A_2 \left(A_2^T C_2^{-1} A_2 \right)^{-1} A_2^T C_2^{-1}$$

and

$$\underline{d}_0 = A_1^T C_1^{-1} y.$$

Consider a one-way model, $y_i \sim N(\theta_i, \sigma^2)$, i = 1, 2, ..., n, where y_i is the mean of m observations for treatment group i. The θ_i are iid as $N(\mu, \tau^2)$ and the prior for μ is vague. Write this model as a three stage linear model.

Calculate D_0^{-1} and \underline{d}_0 and determine D_0 using the result:

$$(aI_n + bJ_n)^{-1} = \frac{1}{a}I_n - \frac{b}{(a+nb)a}J_n$$

for $a > 0, b \neq -a/n$, where I_n is the $n \times n$ identity matrix and J_n is the $n \times n$ matrix whose elements all have value one. [4]

Write down the posterior mean and variance of θ_i and compare them with their classical counterparts, ie $\hat{\theta}_i = y_i$ and $Var[\hat{\theta}_i] = \sigma^2$. [6]

Write down $Cov[\theta_i, \theta_j|y]$.

(b) Suppose

$$y_1 \mid \theta_1 \sim N(\theta_1, 1)$$
$$y_2 \mid \theta_2 \sim N(\theta_2, 1),$$

where y_1 and y_2 are independent, the prior for (θ_1, θ_2) is given by

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) \sim N\left(\left(\begin{array}{c}\mu\\\mu\end{array}\right), \left(\begin{array}{c}2&1\\1&2\end{array}\right)\right)$$

and the prior for μ is vague. Find the joint posterior distribution of (θ_1, θ_2) using the results in (a). [6]

Hence find the posterior distribution of $\theta_1 - \theta_2$.

SEE NEXT PAGE

[1]

[5]

[3]

Question 5

(a) Suppose that you wish to estimate the posterior means of three parameters, θ , δ and β in a probability model for some data. The full conditional distributions,

$$p(\theta|\delta,\beta,\text{data}), \quad p(\delta|\beta,\theta,\text{data}), \quad p(\beta|\theta,\delta,\text{data})$$

are known.

Explain carefully how to simulate a sample of the parameters from the posterior distribution using the conditional distributions to construct a Gibbs sampler.

How can the posterior expectation $E[\theta^g|data]$, where g is known, be estimated from this sample?

- (b) Suppose that we have independent observations x_1, x_2, \ldots, x_n from a Poisson distribution with mean θ_1 and an independent sample y_1, y_2, \ldots, y_n from a Poisson distribution with mean θ_2 . The prior distributions of the θ_i are independent and identically distributed gamma distributions, with parameters α and β , where α is known, but β is unknown and assigned a gamma distribution with parameters γ and δ , where γ is known and δ is unknown. Derive the necessary conditional distributions for Gibbs sampling and explain how this would proceed. [10]
- (c) Suppose that two observations x_{n-1}, x_n are missing from the first sample. Explain how you would amend your algorithm to take account of the missing data. [5]

INTERNAL EXAMINER: K.D.S. Young EXTERNAL EXAMINER: W.Krzanowski

[8]

[2]