UNIVERSITY OF SURREY

B. Sc. Honours Courses in Mathematical Studies

Level HE3 Examination
Module MS331 BAYESIAN STATISTICS

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account.
A formula sheet and Cambridge Statistical Tables will be provided.

Question 1

(a) The lifetime T of a certain aircraft component follows a Weibull distribution with distribution function given by

$$
F(t)=1-\exp \left(-\lambda t^{\gamma}\right)
$$

where $\lambda>0, \gamma>0$ are unknown parameters. Obtain the density function of T.
(b) A number of n components were put on test and failed at times $t_{1}, t_{2}, \ldots, t_{n}$. Find the likelihood function.
(c) Assume that λ and γ are a priori independent. The prior density $p(\gamma)$ for γ is not specified, but the improper prior density $p(\lambda) \propto \lambda^{-1}$ is adopted for λ. Obtain the form of the marginal posterior density for γ. (Do not attempt to evaluate the constant of proportionality.)
(d) Assume now that γ is known. Obtain the posterior distribution of λ. Suppose that the parameter of interest is the median lifetime, θ. Show that

$$
\theta=\left(\lambda^{-1} \log 2\right)^{1 / \gamma}
$$

and hence find the posterior mean of θ as a function of γ.

Question 2

(a) A series of n independent trials have outcomes $y_{1}, y_{2}, \ldots, y_{n}$, where $y_{i}=1$ if trial i results in a success, and $y_{i}=0$ otherwise. Suppose that the constant chance of success in these trials is θ. If the prior distribution for θ is Beta with parameters a and b, obtain the posterior distribution of θ.
(b) Obtain the joint predictive distribution of the results y_{n+1}, y_{n+2} of the next two trials in the series. Deduce that the predictive probability π that both trials result in a failure is given by

$$
\pi=\frac{(b+n-r+1)(b+n-r)}{(a+b+n+1)(a+b+n)}
$$

where r is the number of successes in the first n trials.
(c) If $r=3$ and $n=10$, calculate π using
(i) $a=b=2$,
(ii) $a=b=0$.

Also calculate π in both of these cases if $r=30$ and $n=100$.
Comment carefully on your answers.

Question 3

(a) Define the term sufficient statistic as applied to the family $p(\underline{x} \mid \theta)$. Show that if $t(\underline{x})$ is sufficient for the family $p(\underline{x} \mid \theta)$ then for any prior distribution, the posterior distributions of θ given \underline{x} and $t(\underline{x})$ are the same.
(b) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ is a random sample from a Normal distribution with known mean μ and unknown precision θ. If the prior distribution for θ is gamma, $G a\left(\frac{a}{2}, \frac{b}{2}\right)$, find the posterior distribution of θ and deduce that the posterior distribution for θ depends on the data only though $\sum\left(x_{i}-\mu\right)^{2}$.
Find the posterior mean and variance of θ.
Show that the posterior mean can be written as a weighted average of the prior mean and the maximum likelihood estimator $\hat{\theta}$ of θ, where

$$
\hat{\theta}=\frac{n}{\sum\left(x_{i}-\mu\right)^{2}} .
$$

(c) If $\sum\left(x_{i}-\mu\right)^{2}=1, a=12, b=4$ and $n=4$, find a 95% credible interval for θ. [You may use the fact that if $X \sim G a\left(\frac{a}{2}, \frac{b}{2}\right)$, then $b X \sim \chi_{a}^{2}$.]

Question 4

(a) A three stage linear model is given by

$$
\begin{aligned}
\underline{y} \mid \underline{\theta}_{1} & \sim N\left(A_{1} \underline{\theta}_{1}, C_{1}\right) \\
\underline{\theta}_{1} \mid \underline{\theta}_{2} & \sim N\left(A_{2} \underline{\theta}_{2}, C_{2}\right) \\
\underline{\theta}_{2} & \sim N\left(\underline{\mu}, C_{3}\right)
\end{aligned}
$$

where $\underline{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}, \underline{\theta}_{1}$ and $\underline{\theta}_{2}$ are both vectors of parameters of length p_{1} and p_{2} respectively, A_{1} is an $n \times p_{1}$ matrix, A_{2} is a $p_{1} \times p_{2}$ matrix, C_{1} is an $n \times n$ variance-covariance matrix, C_{2} is a $p_{1} \times p_{1}$ variancecovariance matrix, C_{3} is a $p_{2} \times p_{2}$ variance-covariance matrix and $\underline{\mu}$ is a p_{2} dimensional vector. $A_{1}, A_{2}, C_{1}, C_{2}, C_{3}$ and $\underline{\mu}$ are known.

With vague prior information i.e. $C_{3}^{-1} \rightarrow 0$, the posterior distribution of $\underline{\theta}_{1} \mid \underline{y}$ is $N\left(D_{0} \underline{d}_{0}, D_{0}\right)$ where

$$
D_{0}^{-1}=A_{1}^{T} C_{1}^{-1} A_{1}+C_{2}^{-1}-C_{2}^{-1} A_{2}\left(A_{2}^{T} C_{2}^{-1} A_{2}\right)^{-1} A_{2}^{T} C_{2}^{-1}
$$

and

$$
\underline{d}_{0}=A_{1}^{T} C_{1}^{-1} y .
$$

Consider a one-way model, $y_{i} \sim N\left(\theta_{i}, \sigma^{2}\right), i=1,2, \ldots, n$, where y_{i} is the mean of m observations for treatment group i. The θ_{i} are iid as $N\left(\mu, \tau^{2}\right)$ and the prior for μ is vague. Write this model as a three stage linear model.
Calculate D_{0}^{-1} and \underline{d}_{0} and determine D_{0} using the result:

$$
\left(a I_{n}+b J_{n}\right)^{-1}=\frac{1}{a} I_{n}-\frac{b}{(a+n b) a} J_{n}
$$

for $a>0, b \neq-a / n$, where I_{n} is the $n \times n$ identity matrix and J_{n} is the $n \times n$ matrix whose elements all have value one.
Write down the posterior mean and variance of θ_{i} and compare them with their classical counterparts, ie $\hat{\theta}_{i}=y_{i}$ and $\operatorname{Var}\left[\hat{\theta}_{i}\right]=\sigma^{2}$.
Write down $\operatorname{Cov}\left[\theta_{i}, \theta_{j} \mid y\right]$.
(b) Suppose

$$
\begin{aligned}
y_{1} \mid \theta_{1} & \sim N\left(\theta_{1}, 1\right) \\
y_{2} \mid \theta_{2} & \sim N\left(\theta_{2}, 1\right),
\end{aligned}
$$

where y_{1} and y_{2} are independent, the prior for $\left(\theta_{1}, \theta_{2}\right)$ is given by

$$
\binom{\theta_{1}}{\theta_{2}} \sim N\left(\binom{\mu}{\mu},\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\right)
$$

and the prior for μ is vague. Find the joint posterior distribution of $\left(\theta_{1}, \theta_{2}\right)$ using the results in (a).
Hence find the posterior distribution of $\theta_{1}-\theta_{2}$.

Question 5

(a) Suppose that you wish to estimate the posterior means of three parameters, θ, δ and β in a probability model for some data. The full conditional distributions,

$$
p(\theta \mid \delta, \beta, \text { data }), \quad p(\delta \mid \beta, \theta, \text { data }), \quad p(\beta \mid \theta, \delta, \text { data })
$$

are known.
Explain carefully how to simulate a sample of the parameters from the posterior distribution using the conditional distributions to construct a Gibbs sampler.
How can the posterior expectation $E\left[\theta^{g} \mid d a t a\right]$, where g is known, be estimated from this sample?
(b) Suppose that we have independent observations $x_{1}, x_{2}, \ldots, x_{n}$ from a Poisson distribution with mean θ_{1} and an independent sample $y_{1}, y_{2}, \ldots, y_{n}$ from a Poisson distribution with mean θ_{2}. The prior distributions of the θ_{i} are independent and identically distributed gamma distributions, with parameters α and β, where α is known, but β is unknown and assigned a gamma distribution with parameters γ and δ, where γ is known and δ is unknown. Derive the necessary conditional distributions for Gibbs sampling and explain how this would proceed.
(c) Suppose that two observations x_{n-1}, x_{n} are missing from the first sample.

Explain how you would amend your algorithm to take account of the missing data.

