UNIVERSITY OF SURREY

B. Sc. Honours Courses in Mathematical Studies

Level HE3 Examination
Module MS331 BAYESIAN STATISTICS

Time allowed - 2 hours
Autumn Semester 2004

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account. A formula sheet and Cambridge Statistical Tables will be provided.

Question 1

(a) A random sample $t_{1}, \ldots t_{n}$ of lifetimes of batteries follows an exponential distribution with unknown mean $\theta^{-1}>0$. Obtain the likelihood function of the sample and show that the gamma (a, b) distributions with densities

$$
p(\theta)=\frac{b^{a} \theta^{a-1} e^{-b \theta}}{\Gamma(a)}, a, b>0,
$$

form a conjugate family. Obtain the posterior distribution of θ when the prior distribution is a member of this family. Identify this distribution.
(b) Obtain the predictive distribution of the lifetime T of another battery and show that

$$
\operatorname{Pr}\left(T \geq t \mid t_{1}, \ldots, t_{n}\right)=\left(\frac{b+s}{b+s+t}\right)^{a+n}
$$

where $s=\sum_{i} t_{i}$. The following lifetimes in months of batteries were recorded:

8.33	0.78	13.07	11.83	9.34
2.34	3.23	3.89	2.28	5.59

Find the probability that the lifetime of another battery exceeds 8 months, given the prior distribution of θ is gamma $(2,10)$.
(c) It is required to obtain the predictive density of the total lifetime Y of m future batteries. What is the distribution of Y given θ ? Obtain the predictive density of Y up to a constant of proportionality.

Question 2

(a) The results of k experiments on female rats yield the numbers y_{i} of rats who developed an endrometrial stromal polyp out of the total number n_{i} of rats in experiment i for $i=1, \ldots, k$. The data are modelled by assuming that the y_{i} are independent binomial random variables with parameters n_{i}, θ_{i}, respectively, where θ_{i} is the probability of a rat developing a polyp in the i th experiment. Write $\underline{y}=\left(y_{1}, y_{2}, \ldots, y_{k}\right), \underline{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$. Show that the likelihood function of the data is given by

$$
p(\underline{y} \mid \underline{\theta}) \propto \prod_{i=1}^{k} \theta_{i}^{y_{i}}\left(1-\theta_{i}\right)^{n_{i}-y_{i}} .
$$

(b) Now assume that the θ_{i} are an independent sample from a beta (α, β) distribution. That is,

$$
p(\underline{\theta} \mid \alpha, \beta)=\prod_{i=1}^{k}\left\{\frac{\theta_{i}^{\alpha-1}\left(1-\theta_{i}\right)^{\beta-1}}{B(\alpha, \beta)}\right\}
$$

where $B(.,$.$) is the beta function. Further assume a vague prior for$ (α, β) of the form $p(\alpha, \beta) \propto(\alpha \beta)^{-1}$. Show that the full posterior density $p(\underline{\theta}, \alpha, \beta \mid \underline{y})$ is proportional to $(\alpha \beta)^{-1} p(\underline{\theta} \mid \alpha, \beta) p(\underline{y} \mid \theta)$. Hence write down an expression for $p(\underline{\theta}, \alpha, \beta \mid \underline{y})$. (Do not attempt to calculate the constant of proportionality.)
(c) Show that the joint marginal posterior density of (α, β) is given by

$$
p(\alpha, \beta \mid \underline{y}) \propto \frac{\prod_{i=1}^{k} B\left(\alpha+y_{i}, \beta+n_{i}-y_{i}\right)}{\alpha \beta\{B(\alpha, \beta)\}^{k}} .
$$

Suppose that the parameter $\mu=\frac{\alpha}{\alpha+\beta}$ is of primary interest. Deduce the form of the joint posterior density of (μ, ϕ), where $\phi=\alpha+\beta$. Suggest a method for evaluating the marginal posterior distribution of μ.

Question 3

(a) Define a $100(1-\alpha) \%$ credible interval and a $100(1-\alpha) \%$ Highest Posterior Density (HPD) interval for an unknown parameter θ. Prove that a $100(1-\alpha) \%$ HPD interval is the shortest possible credible interval, assuming that the posterior distribution has a unimodal density.
(b) Observations are assumed to come from a Cauchy distribution with pdf

$$
p(x \mid \theta)=\pi^{-1}\left[1+(x-\theta)^{2}\right]^{-1} \quad-\infty<x<\infty
$$

The prior density for θ is assumed to be proportional to a constant. Thus the posterior density for θ is given by

$$
p(\theta \mid \underline{x}) \propto \prod_{i=1}^{n}\left[1+\left(x_{i}-\theta\right)^{2}\right]^{-1}
$$

Suppose there are 5 observations 2.1, 4.9, 3.5, 2.8 and 4.1. Find the missing lines in the following table corresponding to $\theta=4.0,4.5,5.0$ where

$$
H(\theta)=10^{5}\left[1+(2.1-\theta)^{2}\right]^{-1}\left[1+(4.9-\theta)^{2}\right]^{-1} \ldots\left[1+(4.1-\theta)^{2}\right]^{-1}
$$

and the integrals are calculated using Simpson's rule.

θ	$H(\theta)$	$\int_{-\infty}^{\theta} H(t) d t$	$p(\theta \mid \underline{x})$	$\int_{-\infty}^{\theta} p(t \mid \underline{x}) d t$
0.0	0	0	0	0
0.5	2		.000	
1.0	9	2.8	.000	.000
1.5	56		.006	
2.0	365	102.5	.042	.012
2.5	1643		.187	
3.0	4171	1953.8	.475	.223
3.5	5632		.642	
4.0				
4.5				
5.0			.005	
5.5	48			
6.0	7	8777.5	.000	1.000
6.5	1		.000	
7.0	0	8779.3	.000	1.000

Explain how you would amend the table if the prior for θ was normal with mean μ and variance σ^{2}.
Why is numerical integration important for the Bayesian approach to statistics?

Question 4

(a) A three-stage linear model is given by

$$
\begin{aligned}
\underline{y} \mid \underline{\theta}_{1}, C_{1} & \sim N\left(A_{1} \underline{\theta}_{1}, C_{1}\right) \\
\underline{\theta}_{1} \mid \underline{\theta}_{2}, C_{2} & \sim N\left(A_{2} \underline{\theta}_{2}, C_{2}\right) \\
\theta_{2} \mid \underline{\mu}, C_{3} & \sim \\
\sim & N\left(\underline{\mu}, C_{3}\right)
\end{aligned}
$$

where y is an $n \times 1$ vector, $\underline{\theta}_{1}$ is a $p_{1} \times 1$ vector, $\underline{\theta}_{2}$ is a $p_{2} \times 1$ vector, A_{1}, $A_{2}, C_{1}, C_{2}, C_{3}$ and $\underline{\mu}$ are known.
Using the results for the two stage model given below show that the posterior distribution of $\underline{\theta}_{1}$ is $N(D \underline{d}, D)$ where

$$
\begin{aligned}
D^{-1} & =A_{1}^{T} C_{1}^{-1} A_{1}+\left\{C_{2}+A_{2} C_{3} A_{2}^{T}\right\}^{-1} \\
\underline{d} & =A_{1}^{T} C_{1}^{-1} \underline{y}+\left\{C_{2}+A_{2} C_{3} A_{2}^{T}\right\}^{-1} A_{2} \underline{\mu} .
\end{aligned}
$$

Use the matrix lemma given below to find the corresponding result when $C_{3}^{-1} \rightarrow 0$.
[Note: The two-stage linear model is given by

$$
\begin{aligned}
& \underline{y} \mid \underline{\theta}_{1}, C_{1} \sim N\left(A_{1} \underline{\theta}_{1}, C_{1}\right) \\
& \underline{\theta}_{1} \mid \underline{\mu}, C_{2} \sim N\left(\underline{\mu}, C_{2}\right),
\end{aligned}
$$

where A_{1}, C_{1}, C_{2} and $\underline{\mu}$ are known. The marginal distribution of \underline{y} is $N\left(A_{1} \underline{\mu}, C_{1}+A_{1} C_{2} A_{1}^{T}\right)$ and the posterior distribution of θ_{1} is $N(B b, B)$ where

$$
\begin{aligned}
B^{-1} & =A_{1}^{T} C_{1}^{-1} A_{1}+C_{2}^{-1} \\
\underline{b} & =A_{1}^{T} C_{1}^{-1} \underline{y}+C_{2}^{-1} \underline{\mu}
\end{aligned}
$$

Matrix lemma: for any matrices A_{1}, C_{1}, C_{2} of appropriate dimensions for which the inverses stated in the result exist we have

$$
\left.\left.\left\{C_{1}+A_{1} C_{2} A_{1}^{T}\right\}^{-1}=C_{1}^{-1}-C_{1}^{-1} A_{1}\left(A_{1}^{T} C_{1}^{-1} A_{1}+C_{2}^{-1}\right)^{-1} A_{1}^{T} C_{1}^{-1}\right\} .\right]
$$

(b) Consider a simple linear regression model $y_{i} \mid \alpha, \beta \sim N\left(\alpha+\beta\left(x_{i}-\bar{x}\right), \sigma^{2}\right)$ for $i=1,2, \ldots, n$ where $\alpha \sim N\left(0, \sigma^{2}\right), \beta \sim N\left(2, \sigma^{2}\right)$ and $\operatorname{Cov}(\alpha, \beta)=0$. Write this as a two stage normal linear model. If the values of y_{i} and x_{i} are as given below, find the posterior distributions of α and β in terms of σ.

$$
\begin{array}{c|ccccc}
y_{i} & 2.6 & 4.5 & 7.1 & 8.7 & 11.0 \\
\hline x_{i} & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Question 5

(a) It is desired to estimate the posterior means of three parameters, θ, δ and ϕ. The full conditional distributions,

$$
p(\theta \mid \delta, \phi, \text { data }), \quad p(\delta \mid \phi, \theta, \text { data }), \quad p(\phi \mid \theta, \delta, \text { data })
$$

are known. Explain how the posterior means may be estimated using the Gibbs sampling method.
(b) The brightness (J) of a comet may be modelled by a Pareto distribution with density

$$
p(J \mid \alpha)=\frac{\alpha J_{x}^{\alpha}}{J^{\alpha+1}} \quad J>J_{x}
$$

where J_{x} is the lower limit of brightness for the sample considered and α is a brightness index.
(i) If a sample of brightness values $J_{1}, J_{2}, \ldots, J_{n}$ for n comets is available show that the maximum likelihood estimate of α is given by

$$
\hat{\alpha}=\frac{n}{\sum_{i=1}^{n} \log _{e}\left(J_{i} / J_{x}\right)} .
$$

(ii) If the prior distribution for α is taken as $\operatorname{Gamma}(a, b)$ find the posterior distribution in terms of a, b, n and $\hat{\alpha}$.
(iii) Three groups of comets of sizes n_{1}, n_{2} and n_{3} have brightness parameters α_{1}, α_{2} and α_{3}. The prior distribution for each α_{i} is taken as $\operatorname{Gamma}(a, b)$. For physical reasons the brightness parameters must be ordered $\alpha_{1}<\alpha_{2}<\alpha_{3}$. Explain how the posterior means of the parameters can be estimated by adapting the Gibbs sampling algorithm you have described in part (a).

