UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE3 Examination
Module MS310 Introduction to Function Spaces

Time allowed - 2 hrs
Autumn Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) State the Contraction Theorem.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a contraction in the usual metric $d(x, y)=|x-y|$.

Prove that f is uniformly continuous.
(c) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y)=\left(\frac{1}{3}(x+\cos y), \frac{1}{3}(y+\cos x)\right) .
$$

Show that F has a unique fixed point.
(d) Let $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ be a real $n \times n$-matrix such that

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i, j}\right|^{2}<1 \tag{1}
\end{equation*}
$$

Show that the linear equation

$$
A x+b=x
$$

has a unique solution in \mathbb{R}^{n}. (Hint: show that an appropriate map is a contraction w.r.t. Euclidean metric.)
(e) Conclude that for any matrix satisfying (1)

$$
\operatorname{det}(I-A) \neq 0
$$

where I is the $n \times n$ identity matrix.
(f) Suppose $F: X \rightarrow X$ is a mapping of a complete metric space (X, d), and assume that for some $n>1$, the n-fold composition

$$
F^{n}:=\underbrace{F \circ \cdots \circ F}_{n \text { times }}
$$

is a contraction. Does this imply that F has a fixed point? Is it unique? Justify your answer.

Question 2

(a) Give the definition of $L^{2}([-1,1])$, and indicate for which $p \in \mathbb{R}$ the function

$$
f(x)= \begin{cases}|x|^{-p} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

belongs to $L^{2}([0,1])$.
(b) Show that if $f_{n} \rightarrow f$ uniformly, then $f_{n} \rightarrow f$ in $\left\|\|_{2}\right.$.
(c) Let $\left\{g_{n}\right\}_{n \in \mathbb{N}} \subset L^{2}([-1,1])$ be given by

$$
g_{n}(x)= \begin{cases}n(1-n|x|) & \text { if }|x| \leq \frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Determine whether $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ converges
(i) pointwise,
(ii) uniformly,
(iii) in $\left\|\|_{2}\right.$.
(d) Define what is meant by a Hilbert space, and explain why $\left(L^{2}([-1,1]),\| \|_{2}\right)$ is a Hilbert space, but $\left(L^{1}([-1,1]),\| \|_{1}\right)$ is not.
(e) State the Cauchy-Schwarz inequality and explain what role it plays in showing that $L^{2}([-1,1])$ is a normed space.
(f) Let \langle,$\rangle be the standard inner product on L^{2}([-1,1])$.

Show that if $f_{n} \rightarrow f$ in $\left\|\|_{2}\right.$, then

$$
\left\langle f_{n}, h\right\rangle \rightarrow\langle f, h\rangle
$$

for every $h \in L^{2}([-1,1])$.

Question 3

(a) What is a Lipschitz continuous function between metric spaces?
(b) Show that

$$
\|f\|_{*}=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[-\pi, \pi], x \neq y\right\}
$$

is not a norm on the space $C([-\pi, \pi])$ of continuous functions. Give two different reasons.
(c) Let X be the space of real continuously differentiable 2π-periodic functions such that $f(0)=0$. You may assume that $\left\|\|_{*}\right.$ is a norm on X. Show that every function in X is bounded.
(d) Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $\left(X,\| \|_{*}\right)$, and let f be the pointwise limit of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$. Show that f is Lipschitz.
Is $\left(X,\| \|_{*}\right)$ a Banach space? Justify your answer.
(e) What is meant by equivalent norms?

Show that $\left\|\|_{1}\right.$ and $\| \|_{\infty}$ are equivalent on \mathbb{R}^{2}
(f) Show that $\left\|\|_{2}\right.$ and $\| \|_{*}$ are not equivalent on the space X from item (c).

Question 4

(a) What is an orthonormal basis of a Hilbert space?
(b) Let f belong to Hilbert space $(X,\langle\rangle$,$) with orthonormal basis \left\{e_{n}\right\}_{n \in \mathbb{N}}$. Show that the Fourier coefficients of f tend to zero.

Let $f \in L^{2}([0,1])$ be given by $f(x)=\sin \pi x$. The Fourier series of f is given by

$$
F(x)=a_{0}+\sum_{k \in \mathbb{N}} a_{k} \cos 2 \pi k x+\sum_{k \in \mathbb{N}} b_{k} \sin 2 \pi k x .
$$

(c) Give the standard orthonormal basis for $L^{2}([0,1])$ and use it to:
(i) compute a_{0},
(ii) explain (without explicitly computing integrals) why $b_{k}=0$ for all $k \in \mathbb{N}$.
(d) Use integration by parts to show that $a_{k}=\frac{4}{\pi\left(1-4 k^{2}\right)}$ for $k \geq 1$.
(e) State Dirichlet's theorem.
(f) Using the above, compute

$$
\sum_{k \in \mathbb{N}} \frac{1}{4 k^{2}-1}
$$

Explain the role of Dirichlet's theorem in your answer.

