MS310/5/AS07/(Handouts: 0)

UNIVERSITY OF SURREY $^{\odot}$

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE3 Examination

Module MS310 Introduction to Function Spaces

Time allowed -2 hrs

Autumn Semester 2007

Attempt THREE questions If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

SEE NEXT PAGE

Question 1

- (a) State the Contraction Theorem.
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a contraction in the usual metric d(x, y) = |x y|. Prove that f is uniformly continuous.
- (c) Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x,y) = \left(\frac{1}{3}(x + \cos y), \frac{1}{3}(y + \cos x)\right)$$

Show that F has a unique fixed point.

(d) Let $A = (a_{i,j})_{i,j=1}^n$ be a real $n \times n$ -matrix such that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}|^2 < 1.$$
(1)

Show that the linear equation

$$Ax + b = x$$

has a unique solution in \mathbb{R}^n . (Hint: show that an appropriate map is a contraction w.r.t. Euclidean metric.) [6]

(e) Conclude that for any matrix satisfying (1)

$$\det(I-A) \neq 0,$$

where I is the $n \times n$ identity matrix.

(f) Suppose $F: X \to X$ is a mapping of a complete metric space (X, d), and assume that for some n > 1, the *n*-fold composition

$$F^n := \underbrace{F \circ \cdots \circ F}_{n \text{ times}}$$

is a contraction. Does this imply that F has a fixed point? Is it unique? Justify your answer.

[4]

SEE NEXT PAGE

[5]

[3]

[4]

[3]

Question 2

(a) Give the definition of $L^2([-1,1])$, and indicate for which $p \in \mathbb{R}$ the function

$$f(x) = \begin{cases} |x|^{-p} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

belongs to $L^2([0,1])$.

- (b) Show that if $f_n \to f$ uniformly, then $f_n \to f$ in $|| \|_2$.
- (c) Let $\{g_n\}_{n\in\mathbb{N}} \subset L^2([-1,1])$ be given by

$$g_n(x) = \begin{cases} n(1-n|x|) & \text{if } |x| \le \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

Determine whether $\{g_n\}_{n\in\mathbb{N}}$ converges

- (i) pointwise,
- (ii) uniformly,
- (iii) in $|| ||_2$.
- (d) Define what is meant by a Hilbert space, and explain why $(L^2([-1,1]), || ||_2)$ is a Hilbert space, but $(L^1([-1,1]), || ||_1)$ is not. [5]
- (e) State the Cauchy-Schwarz inequality and explain what role it plays in showing that $L^2([-1,1])$ is a normed space. [4]
- (f) Let \langle , \rangle be the standard inner product on $L^2([-1,1])$. Show that if $f_n \to f$ in $|| \parallel_2$, then

$$\langle f_n, h \rangle \to \langle f, h \rangle$$

for every $h \in L^2([-1, 1])$.

SEE NEXT PAGE

[4]

[3]

[3]

[6]

- (a) What is a Lipschitz continuous function between metric spaces?
- (b) Show that

$$||f||_* = \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} : x, y \in [-\pi, \pi], x \neq y\right\}$$

is not a norm on the space $C([-\pi,\pi])$ of continuous functions. Give two different reasons. [4]

- (c) Let X be the space of real continuously differentiable 2π -periodic functions such that f(0) = 0. You may assume that $\| \|_*$ is a norm on X. Show that every function in X is bounded. [4]
- (d) Let {f_n}_{n∈ℕ} be a Cauchy sequence in (X, || ||*), and let f be the pointwise limit of {f_n}_{n∈ℕ}. Show that f is Lipschitz.
 Is (X, || ||*) a Banach space? Justify your answer. [6]
- (e) What is meant by equivalent norms? Show that $\| \|_1$ and $\| \|_{\infty}$ are equivalent on \mathbb{R}^2 [4]
- (f) Show that $\| \|_2$ and $\| \|_*$ are not equivalent on the space X from item (c). [5]

[2]

Question 4

- (a) What is an orthonormal basis of a Hilbert space? [3]
- (b) Let f belong to Hilbert space (X, \langle , \rangle) with orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$. Show that the Fourier coefficients of f tend to zero.

Let $f \in L^2([0,1])$ be given by $f(x) = \sin \pi x$. The Fourier series of f is given by

$$F(x) = a_0 + \sum_{k \in \mathbb{N}} a_k \cos 2\pi kx + \sum_{k \in \mathbb{N}} b_k \sin 2\pi kx.$$

- (c) Give the standard orthonormal basis for $L^2([0,1])$ and use it to:
 - (i) compute a_0 ,
 - (ii) explain (without explicitly computing integrals) why $b_k = 0$ for all $k \in \mathbb{N}$. [5]
- (d) Use integration by parts to show that $a_k = \frac{4}{\pi(1-4k^2)}$ for $k \ge 1$. [4]
- (e) State Dirichlet's theorem.
- (f) Using the above, compute

$$\sum_{k \in \mathbb{N}} \frac{1}{4k^2 - 1}.$$

Explain the role of Dirichlet's theorem in your answer.

[5]

[4]

[4]