UNIVERSITY OF SURREY ${ }^{\circledR}$

B. Sc. Undergraduate Programmes in Mathematical Studies
Level HE3 Examination
Module MS308 NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Time allowed - 2 hours
Spring Semester 2007

Attempt THREE questions.
If any candidate attempts more than THREE questions, only the best THREE solutions will be taken into account.

Question 1

Suppose that $u(x, y)$ is a solution of the PDE

$$
u_{t}=u_{x x}-u \quad \text { for } \quad x \in(0,1) \quad \text { and } \quad t>0
$$

satisfying the boundary conditions $u(0, t)=1, u(1, t)=0$ and the initial condition $u(x, 0)=$ $1-x$.
(a) Show that a Forward Time Central Space (FTCS) finite difference scheme for this PDE may be written

$$
u_{j}^{n+1}=u_{j}^{n}(1-\Delta t-2 r)+r\left(u_{j+1}^{n}+u_{j-1}^{n}\right),
$$

where $r=\Delta t / \Delta x^{2}$.
(b) Determine for what values of Δt the FTCS numerical method is stable.
(c) Given a space mesh-size $\Delta x=1 / 3$ and a timestep $\Delta t=1 / 10$, use the FTCS method to find a numerical solution of the PDE at $t=1 / 10$.
(d) Make a rough sketch of the numerical solution at $t=0$ and $t=1 / 10$. What would you expect the solution to look like after many timesteps? Why?

Question 2

Suppose that $u(x, t)$ is a solution of the PDE

$$
u_{t}=u_{x x} \quad \text { for } \quad x \in(0,1) \quad \text { and } \quad t>0,
$$

satisfying the boundary conditions $u_{x}(0, t)=1, u(1, t)=-1$ and the initial condition $u(x, 0)=x(1-2 x)$.
The Du Fort-Frankel finite difference scheme for solving this PDE using a space meshsize of Δx and timestep Δt is

$$
\frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 \Delta t}=\frac{1}{\Delta x^{2}}\left(u_{j-1}^{n}-\left(u_{j}^{n-1}+u_{j}^{n+1}\right)+u_{j+1}^{n}\right) .
$$

(a) Show that the local truncation error (LTE) of the Du Fort-Frankel scheme is given by

$$
\left(r^{2}-\frac{1}{12}\right) u_{t t} \Delta x^{2}+\frac{\Delta t^{2}}{6} u_{t t t}+O\left(\Delta t^{4}, \Delta x^{4}, r^{4} \Delta x^{6}\right)
$$

where $r=\Delta t / \Delta x^{2}$.
(b) What conditions on Δx and Δt must be satisfied for the method to be consistent?
(c) Using a 'ghost' point write down an approximation for the derivative boundary condition at $x=0$.
(d) Show that the Du Fort-Frankel scheme may be written in the form

$$
\mathrm{Au}^{\mathbf{n}+1}=\mathrm{Bu}^{\mathrm{n}-1}+\mathrm{Cu}^{\mathrm{n}}+\mathbf{a}
$$

stating clearly what the matrices \mathbf{A}, \mathbf{B} and \mathbf{C}, and the vectors $\mathbf{u}^{\mathbf{n}}$ and \mathbf{a} are. Is the method implicit or explicit? Give a reason for your answer.

Question 3

(a) Suppose that $u(x, t)$ satisfies the PDE

$$
u_{t}+a u_{x}=0, \quad a>0 .
$$

(i) Show that a numerical scheme that uses a Forward Time Backward Space (FTBS) finite difference approximation may be written as

$$
u_{j}^{n+1}=(1-p) u_{j}^{n}+p u_{j-1}^{n},
$$

where $p=a \Delta t / \Delta x$.
(ii) Calculate the local truncation error (LTE) of the numerical scheme.
(b) The FTBS method for solving the equation for $u(x, y, t)$

$$
u_{t}+a u_{x}+b u_{y}=0, \quad a>0, b>0,
$$

is

$$
u_{j, k}^{n+1}=(1-p-q) u_{j, k}^{n}+p u_{j-1, k}^{n}+q u_{j, k-1}^{n},
$$

where $p=a \Delta t / \Delta x$ and $q=b \Delta t / \Delta y$.
(i) By considering solutions to the FTBS method of the form $\xi^{n} \exp \left(i j \omega_{1}\right) \exp \left(i k \omega_{2}\right)$, show that the amplification factor ξ satisfies

$$
|\xi|^{2}=1+4 F\left(\omega_{1}, \omega_{2}\right),
$$

where

$$
F\left(\omega_{1}, \omega_{2}\right)=\left(p^{2}-p\right) S_{1}^{2}+\left(q^{2}-q\right) S_{2}^{2}+2 p q S_{1} S_{2} c
$$

and $S_{1}=\sin \left(\omega_{1} / 2\right), S_{2}=\sin \left(\omega_{2} / 2\right), C_{1}=\cos \left(\omega_{1} / 2\right)$ and $C_{2}=\cos \left(\omega_{2} / 2\right)$ and $c=\cos \left(\left(\omega_{1}-\omega_{2}\right) / 2\right)$.
(ii) Use suitable choices of the frequencies ω_{1} and ω_{2} to show that the conditions $0 \leq p \leq 1$ and $0 \leq q \leq 1$ are both necessary for stability.
(iii) Show by completing the square or otherwise that

$$
F\left(\omega_{1}, \omega_{2}\right)=-p(1-p)\left\{\left(S_{1}-\frac{q c}{(1-p)} S_{2}\right)^{2}+\left(\frac{q(1-q)}{p(1-p)}-\frac{q^{2} c^{2}}{(1-p)^{2}}\right) S_{2}^{2}\right\}
$$

(iv) Hence show that the scheme is stable if p and q additionally satisfy $p+q \leq 1$.

Question 4

Consider the equation

$$
\frac{d^{2} u}{d x^{2}}+u=-f(x), \quad \text { for } \quad x \in[0,1]
$$

with $u(0)=u(1)=0$.
(a) Write down a weak formulation of this differential equation, including a definition of the inner product and the function space V used.
(b) Consider a finite element approximation, $u_{h}(x)$, to the solution of the weak form of the differential equation, where

$$
u_{h}(x)=\sum_{j=1}^{N-1} U_{j} \phi_{j}(x)
$$

and the functions $\phi_{j}(x)$ form a basis for the test space $V_{h} \subset V$. Using the weak form, write down the general structure of the Galerkin matrix system.
(c) For $N=2$ sketch the domain and the graph of the relevant linear hat basis function.
(d) If $f(x)=1$, calculate the required elements of the Galerkin matrix system found in (b) and hence find the finite element solution.
(e) Find the analytical solution to the differential equation for $f(x)=1$ and compare your answer with your numerical solution.

