UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE3 Examination
Module MS303 CURVES AND SURFACES

Time allowed - 2 hrs
Autumn Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

Let $\gamma(s)$ be a unit-speed space curve and suppose that the curvature $\kappa(s)>0$ for all s. Let

$$
\mathbf{t}(s)=\dot{\gamma}(s), \quad \mathbf{n}(s)=\frac{\ddot{\gamma}(s)}{\|\ddot{\boldsymbol{\gamma}}(s)\|}, \quad \mathbf{b}(s)=\mathbf{t}(s) \times \mathbf{n}(s)
$$

The Frenet-Serret equations satisfied by the moving frame $(\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s))$ are

$$
\dot{\mathbf{t}}=\kappa \mathbf{n}, \quad \dot{\mathbf{n}}=-\kappa \mathbf{t}+\tau \mathbf{b}, \quad \dot{\mathbf{b}}=-\tau \mathbf{n}
$$

where $\kappa(s)$ and $\tau(s)$ are the curvature and torsion respectively.
(a) Express the third derivative of $\gamma(s)$ in terms of the moving frame

$$
\dddot{\gamma}(s)=a_{1}(s) \mathbf{t}(s)+a_{2}(s) \mathbf{n}(s)+a_{3}(s) \mathbf{b}(s) .
$$

Find expressions for the scalar-valued functions $a_{1}(s), a_{2}(s), a_{3}(s)$ in terms of the curvature $\kappa(s)$, torsion $\tau(s)$ and $\dot{\kappa}$.
(b) Using the expression for $\dddot{\gamma}$ derived in (b), show that

$$
\dot{\gamma} \cdot(\ddot{\gamma} \times \dddot{\gamma})=\tau \kappa^{2}
$$

(c) Show that

$$
\dot{\gamma} \cdot(\ddot{\gamma} \times \dddot{\gamma})=-\kappa \dot{\mathbf{t}} \cdot \dot{\mathbf{b}} .
$$

(d) Suppose that there exists a non-zero constant vector $\mathbf{m} \in \mathbb{R}^{3}$ such that $\mathbf{m} \cdot \dot{\gamma}(s)=0$ for all s. Show that the torsion $\tau(s)$ of the curve is zero for all s.

Question 2

Let M be a surface with regular coordinate chart $(\mathrm{x}, U), U \subset \mathbb{R}^{2}$. Take the unit normal at each point to be

$$
\mathbf{n}(u, v)=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v}}{\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|}, \quad(u, v) \in U
$$

Assume that $\mathbf{x}_{u} \cdot \mathbf{x}_{v}=0$ at all points on the surface.
(a) Expressing the derivative of $\mathbf{n}(u, v)$ as

$$
\begin{aligned}
& \mathbf{n}_{u}=-a_{11} \mathbf{x}_{u}-a_{12} \mathbf{x}_{v}-a_{13} \mathbf{n} \\
& \mathbf{n}_{v}=-a_{21} \mathbf{x}_{u}-a_{22} \mathbf{x}_{v}-a_{23} \mathbf{n} .
\end{aligned}
$$

Explain why $a_{13}=a_{23}=0$ and find expressions for $a_{11}, a_{12}, a_{21}, a_{22}$ in terms of

$$
E=\mathbf{x}_{u} \cdot \mathbf{x}_{u}, \quad G=\mathbf{x}_{v} \cdot \mathbf{x}_{v}, \quad L=\mathbf{n} \cdot \mathbf{x}_{u u}, \quad M=\mathbf{n} \cdot \mathbf{x}_{u v}, \quad N=\mathbf{n} \cdot \mathbf{x}_{v v} .
$$

(b) Let $\gamma(t)=\mathbf{x}(u(t), v(t))$ be a regular curve in the surface passing through a point \mathbf{p}. Show that second derivative of the curve at the point \mathbf{p} satisfies

$$
\mathbf{n} \cdot \ddot{\gamma}=\Pi_{p}(\dot{\mathbf{w}}, \dot{\mathbf{w}}), \quad \mathbf{w}(t):=\binom{u(t)}{v(t)},
$$

where $\Pi_{p}(\dot{\mathbf{w}}, \dot{\mathbf{w}})=\dot{u}^{2} L+2 \dot{u} \dot{v} M+\dot{v}^{2} N$.
(c) How are the eigenvalues of the matrix $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ related to curvature?
(d) Define what it means for a point $\mathbf{p} \in M$ to be umbilic, and relate this property to the eigenvalues of \mathbf{A}.
(e) Suppose \mathbf{p} is an umbilic point, and let $\gamma(t)=\mathbf{x}(u(t), v(t))$ be a curve passing through p. Show that the normal curvature at \mathbf{p} can be expressed in the form

$$
\kappa_{n}=\frac{1}{\ell^{2}} \mathbf{n} \cdot \ddot{\gamma}, \quad \text { with } \quad \ell=\sqrt{E \dot{u}^{2}+G \dot{v}^{2}}
$$

Question 3

Let M be a ruled surface in \mathbb{R}^{3}. Ruled surfaces can be expressed in terms of a single coordinate chart (\mathbf{x}, U) with

$$
\mathbf{x}(u, v)=\gamma(u)+v \boldsymbol{\delta}(u)
$$

where $\boldsymbol{\gamma}(u)$ and $\boldsymbol{\delta}(u)$ are given space curves, and

$$
U=\left\{(u, v) \in \mathbb{R}^{2}: 0<u<\infty, \quad v \in \mathbb{R}\right\}
$$

(a) State conditions on $\boldsymbol{\gamma}(u)$ and $\boldsymbol{\delta}(u)$ for the coordinate chart to be regular.
(b) State a formula for the Gaussian curvature in terms of E, F, G and L, M, N where $E=\mathbf{x}_{u} \cdot \mathbf{x}_{u}, \quad F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, \quad G=\mathbf{x}_{v} \cdot \mathbf{x}_{v}, \quad L=\mathbf{n} \cdot \mathbf{x}_{u u}, \quad M=\mathbf{n} \cdot \mathbf{x}_{u v}, \quad N=\mathbf{n} \cdot \mathbf{x}_{v v}$, where \mathbf{n} is the unit normal vector.
(c) Suppose that $\gamma(u)$ is a unit speed curve, $\boldsymbol{\delta}(u)$ has unit length,

$$
\dot{\boldsymbol{\gamma}}(t) \cdot \boldsymbol{\delta}(t)=0 \quad \text { and } \quad \dot{\boldsymbol{\gamma}}(t) \cdot \dot{\boldsymbol{\delta}}(t)=0 .
$$

Determine expressions for the coefficients E, F and G.
(d) Prove that the Gaussian curvature of a ruled surface with a regular coordinate chart is less than or equal to zero at every point on the surface.

Question 4

Consider a torus M in \mathbb{R}^{3} with regular coordinate chart (\mathbf{x}, U) of the form

$$
\mathbf{x}(u, v)=((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u), \quad R>r>0,
$$

$U=\{(u, v): 0<u<2 \pi, 0<v<2 \pi\}$. Consider a curve in M of the form

$$
\boldsymbol{\gamma}(t)=\mathbf{x}(u(t), v(t)), \quad t \in I \subset \mathbb{R}
$$

with $(u(t), v(t))$ a regular parametrised curve in U.
(a) A basis for the tangent space $T_{\gamma} M$ at each point along the curve is given by $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ evaluated on the curve. Give an expression for this basis on the above chart for the torus. Find an orthonormal basis $\left\{\boldsymbol{\xi}_{1}(t), \boldsymbol{\xi}_{2}(t)\right\}$ for the tangent space.
(b) Let

$$
\dot{\boldsymbol{\xi}}_{1}=c_{1}(t) \boldsymbol{\xi}_{1}(t)+c_{2}(t) \boldsymbol{\xi}_{2}(t)+\nu_{1}(t) \mathbf{n}(t) \quad \text { and } \quad \dot{\boldsymbol{\xi}}_{2}=\omega(t) \boldsymbol{\xi}_{1}(t)+c_{3}(t) \boldsymbol{\xi}_{2}(t)+\nu_{2}(t) \mathbf{n}(t),
$$

where $\mathbf{n}(t)$ is the normal vector at each point along the curve. Show that $c_{1}=c_{3}=0$ and $c_{2}=-\omega(t)$ and find an explicit expression for $\omega(t)$ for a path on the torus. It is not necessary to find expressions for $\nu_{1}(t)$ or $\nu_{2}(t)$.
(c) A vectorfield $\mathbf{w}(t)$ along the curve in M can be expressed in the form

$$
\mathbf{w}(t)=w_{1}(t) \boldsymbol{\xi}_{1}(t)+w_{2}(t) \boldsymbol{\xi}_{2}(t),
$$

where $w_{1}(t)$ and $w_{2}(t)$ are real-valued functions. Give conditions for the vectorfield $\mathbf{w}(t)$ to be parallel.
(d) Find the differential equations that $w_{1}(t)$ and $w_{2}(t)$ must satisfy for a vectorfield $\mathbf{w}(t)$ to be parallel on M.
(e) Suppose $0<t<\pi$ and take $w_{1}(0)=1$ and $w_{2}(0)=0$. Find the coefficients $\left(w_{1}(t), w_{2}(t)\right)$ for a parallel vectorfield on M along the path $u(t)=u_{0}$ with $u_{0} \in(0, \pi)$ and $v(t)=t$.

