UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE3 Examination
Module MS303 CURVES AND SURFACES

Time allowed - 2 hours
Autumn Semester 2006

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

Let $\gamma(t)$ be a space curve with $\kappa(t)>0$ for all t. A space curve $\gamma(t)$ is called a general helix if there exists a constant unit vector $\mathbf{m} \in \mathbb{R}^{3}$ such that $\mathbf{m} \cdot \mathbf{T}(t)=\cos \varphi$, where $\mathbf{T}(t)=\dot{\gamma}(t) /\|\dot{\gamma}(t)\|$, and φ is a constant angle satisfying $0<\varphi<\pi$. The vector \mathbf{m} is called the axis of the helix.
(a) Suppose $\gamma(s)$ is a unit speed general helix. Show that

$$
\mathbf{m}=\alpha_{1} \mathbf{T}(s)+\alpha_{2} \mathbf{B}(s)
$$

with α_{1} and α_{2} independent of s, where $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ is a Frenet-Serret frame for the curve. Express α_{1} and α_{2} as functions of φ.
(b) Suppose that $\gamma(s)$ is a unit speed general helix. Show that the curvature and torsion satisfy

$$
\frac{\tau(s)}{\kappa(s)}=\text { constant } \quad \forall s
$$

and determine an expression for the constant in terms of φ.
(c) Let $\gamma(s)$ be a unit speed curve with its curvature and torsion satisfying $\tau(s)=c \kappa(s)$ for some positive constant c. Prove that it is a general helix: show that there exists a unit vector $\mathbf{m} \in \mathbb{R}^{3}$ with

$$
\mathbf{m} \cdot \dot{\gamma}(s)=f(c),
$$

where $f(c)$ is some function of c only. Determine the function $f(c)$ and show that it satisfies $0<f(c)<1$.
(d) Let $\gamma(t)$ be a space curve of the form

$$
\gamma(t)=\boldsymbol{\beta}(t)+a(t) \mathbf{m},
$$

where $\boldsymbol{\beta}(t)$ is a space curve satisfying $\mathbf{m} \cdot \dot{\boldsymbol{\beta}}(t)=0$ and $\|\dot{\boldsymbol{\beta}}(t)\|=1$ for all t, \mathbf{m} is a constant unit vector, and $a(t)$ is a scalar-valued function. Determine the most general form for $a(t)$ so that $\gamma(t)$ is a general helix, with axis \mathbf{m}.

Question 2

Consider the surface \mathcal{S} in \mathbb{R}^{3} defined by the graph of the function

$$
h(u, v)=u^{2}+u v+\frac{1}{2} v^{2}-\frac{1}{12} u^{3} .
$$

This surface has a global coordinate chart (U, \mathbf{x}) with $U=\mathbb{R}^{2}$ and $\mathbf{x}(u, v)=(u, v, h(u, v))$.
(a) Show that this coordinate chart is regular for all $(u, v) \in U$.
(b) State a formula for the Gaussian curvature in terms of E, F, G and L, M, N where

$$
\begin{aligned}
E & =\mathbf{x}_{u} \cdot \mathbf{x}_{u}, \quad F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, \quad G=\mathbf{x}_{v} \cdot \mathbf{x}_{v} \\
L & =\mathbf{N} \cdot \mathbf{x}_{u u}, \quad M=\mathbf{N} \cdot \mathbf{x}_{u v}, \quad N=\mathbf{N} \cdot \mathbf{x}_{v v}
\end{aligned}
$$

and \mathbf{N} is the unit normal vector. Show that the Gaussian curvature associated with a chart of the form $\mathbf{x}(u, v)=(u, v, h(u, v))$ is

$$
K=\frac{h_{u u} h_{v v}-h_{u v}^{2}}{\left(1+h_{u}^{2}+h_{v}^{2}\right)^{2}}
$$

(c) Find all points in (u, v) space where the surface is parabolic: i.e. the points where the Gaussian curvature vanishes.

Question 3

Let (U, \mathbf{x}) be a regular coordinate chart for a surface $\mathcal{S} \subset \mathbb{R}^{3}$. Let

$$
\gamma(t)=\mathbf{x} \circ \mathbf{w}(t):=\mathbf{x}\left(w_{1}(t), w_{2}(t)\right), \quad \alpha<t<\beta
$$

be a curve in \mathcal{S} with $\mathbf{w}(t)$ a curve in U.
(a) What property does $\ddot{\gamma}(t)$ have to satisfy for $\gamma(t)$ to be a geodesic curve in \mathcal{S} ?
(b) Prove that geodesic curves have constant speed.
(c) Define the geodesic curvature κ_{g} of a curve in \mathcal{S}.
(d) Prove that a curve $\boldsymbol{\gamma}(t)$ in \mathcal{S} is a geodesic curve if and only if $\gamma(t)$ has constant speed and the geodesic curvature is zero. (Hint: express $\ddot{\gamma}(t)$ in terms of a surface-fitted orthonormal frame.)

Question 4

Let $f(x, y)$ be a smooth real-valued function satisfying $\|\nabla f\| \neq 0$, and suppose that the set $\{(x, y): f(x, y)=0\}$ defines a curve in the (x, y)-plane.
(a) Write down the formula for the curvature of a plane parametrised curve $(x(t), y(t))$.
(b) Assume that the curve satisfying $f(x(t), y(t))=0$ is parametrised by a solution of the differential equations

$$
\dot{x}=-f_{y} \quad \text { and } \quad \dot{y}=f_{x} .
$$

Prove that the curvature at any point on the curve can be expressed purely in terms of f and its derivatives by

$$
\kappa=-\frac{1}{\|\nabla f\|^{3}} \operatorname{det}\left[\begin{array}{ccc}
f_{x x} & f_{x y} & f_{x} \tag{1}\\
f_{y x} & f_{y y} & f_{y} \\
f_{x} & f_{y} & 0
\end{array}\right]
$$

where $\|\nabla f\|=\sqrt{f_{x}^{2}+f_{y}^{2}}$.
(c) Suppose the parametrisation is defined by the solution of the differential equation

$$
\dot{x}=-h(t) f_{y} \quad \text { and } \quad \dot{y}=h(t) f_{x}
$$

where $h(t)$ is any nonzero function. Prove that the formula (1) for κ is independent of the choice of $h(t)$.
(d) Compare the curve described in (b) with the curve in (c). What is the significance of the function $h(t)$ in part (c)?

