UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS238 STOCHASTIC PROCESSES

Time allowed - 2 hrs
Spring Semester 2008

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

Consider the standard gambler's ruin problem where player A competes against player B with stakes of $£ 1$ and each player has a finite amount of money. Let u_{k} denote the probability that A wins (i.e. B is ruined) starting with $£ k$.
(a) Set up the usual recurrence relation for u_{k} and deduce that

$$
u_{k}=\frac{1-\left(\frac{q}{p}\right)^{k}}{1-\left(\frac{q}{p}\right)^{N}}
$$

when $p \neq \frac{1}{2}$. (Your answer should include an explanation of what N, p and q denote.)
(b) Determine u_{k} in the remaining case $p=\frac{1}{2}$.
(c) Compute the probability that B wins, and hence deduce that it is certain that the game will eventually terminate, for all values of p, k and N.
(d) Now suppose that A starts with only $£ 1$. Player B believes that the chance of A winning is less than $\frac{1}{2}$ provided B starts with a sufficiently large amount of money. In fact this is not always correct. Take the appropriate limit to find the range of values of p for which B is correct.

Question 2

(a) Consider a homogenous Markov chain with state space $\{1,2,3,4\}$ and transition matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{7} & 0 & 0 & \frac{6}{7} \\
0 & \frac{2}{7} & \frac{1}{7} & \frac{4}{7}
\end{array}\right)
$$

(i) Compute $P\left(X_{3}=1 \mid X_{0}=3, X_{1}=4, X_{2}=3\right)$.
(ii) Compute $P\left(X_{1}=4, X_{2}=3, X_{3}=1 \mid X_{0}=3\right)$.
(iii) Compute the probability of moving from state 4 to state 2 in two steps.
(iv) Compute the expected time to absorption starting from state 3 .
(b) Let $\left\{X_{n}\right\}$ be a homogeneous Markov chain.
(i) When is a state j said to be recurrent?
(ii) Write down a criterion for recurrence of state j in terms of the probabilities $p_{j j}^{(n)}$ of a return in n steps.
Write down a criterion for recurrence of state j in terms of the probabilities $f_{j j}^{(n)}$ of the first return in n steps.
Indicate which one of these two criteria is immediate from the definitions.
(iii) Prove that $p_{j j}^{(n)}=\sum_{k=1}^{n} f_{j j}^{(k)} p_{j j}^{(n-k)}$ for $n \geq 1$.
(iv) Set $f_{j j}^{(0)}=0$ and let

$$
F(t)=\sum_{n=0}^{\infty} f_{j j}^{(n)} t^{n}, \quad G(t)=\sum_{n=0}^{\infty} p_{j j}^{(n)} t^{n} .
$$

Prove that

$$
F(t) G(t)=G(t)-1
$$

Hence prove that the two criteria in part (ii) are equivalent.

Question 3

Let $\left\{X_{n}\right\}$ be a homogeneous Markov chain.
(a) Define the 1-step transition probabilities $p_{i j}$ and the n-step transition probabilities $p_{i j}^{(n)}$, $n \geq 0$.
(b) When are two states said to communicate?
(c) Give the definition for a communicating class to be closed.
(d) The transition matrix of a Markov chain with states $\{0,1,2,3,4,5\}$ is given by

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0 & \frac{3}{5} & \frac{2}{5}
\end{array}\right)
$$

Determine the communicating classes and decide which classes are closed.
Determine (giving reasons) which states are recurrent, transient, periodic, aperiodic, and compute the period of any periodic states.
(e) Consider the Markov chain with state space $\{1,2,3,4\}$ and transition matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{5} & \frac{2}{5} & \frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

(i) Explain why the Markov chain is irreducible and aperiodic.
(ii) State a theorem from which it follows that there is a unique stationary distribution for this Markov chain.
(iii) Compute the stationary distribution.
(iv) Given the initial distribution $\left(0 \frac{1}{3} \frac{1}{3} \frac{1}{3}\right)$ compute $\lim _{n \rightarrow \infty} P\left(X_{n}=1\right)$, explaining your reasoning.

Question 4

Let $\{X(t), t \geq 0\}$ be a stochastic process with state space $\{0,1,2, \ldots\}$ and $X(0)=0$.
(a) State the mathematical properties that $X(t)$ must satisfy for the process to be a Poisson process with rate parameter $\lambda>0$.
(b) Let $X(t)$ be as in part (a).
(i) Derive the differential equations

$$
\frac{d p_{n}(t)}{d t}=-\lambda p_{n}(t)+\lambda p_{n-1}(t)
$$

for the probabilities $p_{n}(t)=P(X(t)=n), n \geq 1$, and write down the differential equation for $p_{0}(t)$.
(ii) Write down the appropriate initial conditions when $n=0$.
(iii) Solve for $p_{0}(t)$ and $p_{1}(t)$, and show that $p_{2}(t)=\frac{1}{2} \lambda^{2} t^{2} e^{-\lambda t}$.
(c) Suppose that $\lambda=\frac{1}{3}$. Use the expressions for $p_{1}(t)$ and $p_{2}(t)$ to compute
(i) $P(X(20)=2)$ and (ii) $P(X(60)=3 \mid X(20)=1)$.

