UNIVERSITY OF SURREY[©]

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS238 STOCHASTIC PROCESSES

Time allowed – 2 hrs

Autumn Semester 2006

Attempt THREE questions. If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

SEE NEXT PAGE

- a) (Duration of gambler's game) Player A plays against player B. Player A starts with $\pounds k$ and player B with $\pounds (N k)$. In each play A wins $\pounds 1$ with probability p > 0 and loses $\pounds 1$ with probability q = 1 p. The game is over when either player has won all the money.
 - (i) Let $Pr(d_k = n)$ be the probability that the game finishes after n plays. Justify the equation

$$\Pr(d_k = n) = p\Pr(d_{k+1} = n - 1) + q\Pr(d_{k-1} = n - 1).$$

(ii) Let $D_k = E(d_k)$ be the expected duration of the game when A starts with $\pounds k$. Derive the equation

$$D_k = pD_{k+1} + qD_{k-1} + 1$$

from part (i).

- (iii) Formulate boundary conditions D_0 and D_N and then solve the difference equation from (ii) for $q \neq p$. [9]
- b) Consider the Markov chain on the state space $\{0, 1, 2, 3\}$ whose transition probability matrix is given by

$$P = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0.1 & 0.4 & 0.1 & 0.4 \\ 0.2 & 0.1 & 0.6 & 0.1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Starting in state 1, determine the probability that the Markov chain ends in state 0. [6]

SEE NEXT PAGE

[6]

[4]

- a) Define the mean recurrence time μ_i of a state, and explain what it means for a state to be transient, recurrent, positive recurrent and null recurrent. [4]
- b) Consider a homogeneous Markov chain with state space \mathbb{Z} . Give a necessary and sufficient condition for state 0 to be recurrent in terms of the probabilities

$$\Pr(X_n = 0 | X_0 = 0) = p_{00}^{(n)}.$$
[3]

c) Consider a random walk on the integers with transition probabilities

$$\Pr(X_{n+1} = k+1 | X_n = k) = p$$

$$\Pr(X_{n+1} = k-1 | X_n = k) = q$$

where p + q = 1. Show that

$$p_{00}^{(2n)} = \frac{(2n)!}{n!n!} p^n q^n, \quad p_{00}^{(2n+1)} = 0.$$
[4]

d) Use Stirling's approximation

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

to show

$$p_{00}^{(2n)} \sim \frac{(4pq)^n}{\sqrt{\pi n}}$$

and hence deduce that state 0 is recurrent if $p = q = \frac{1}{2}$.

- e) If $p \neq q$ show that 4pq < 1 by discussing the function f(x) = 4x(1-x) for $x \in [0,1]$. Hence show that state 0 is transient. [4]
- f) For the Markov chain on the state space $\{1, 2, 3, 4, 5, 6\}$ with the transition probability matrix

determine which states are recurrent, null-recurrent, positive recurrent and which are transient. [6]

[4]

- a) Consider a Markov chain $\{X_n\}$ with state space $\{0, 1, \ldots, N\}$. Assume that the Markov chain starts in state *i* at time 0. Give an expression for the expected number of visits $M_j^{(n)}$ to state *j* up to time *n*, in terms of the *m*-step transition probabilities $p_{ij}^{(m)}$, $0 \le m \le n$.
- b) Show that an aperiodic, irreducible Markov chain on a finite state space $\{0, 1, ..., N\}$ on average spends a fraction of $1/\mu_j$ in state j where μ_j is the mean recurrence time of state j.

Hint: Compute the fraction of time spent in state j as $\lim_{n\to\infty} M_j^{(n)}/n$. Then use the Basic Limit Theorem and the fact that for a sequence $\{a_n\}_{n\in\mathbb{N}}$ with $a_n \to a$ we have $\frac{1}{n}\sum_{m=1}^n a_m \to a$.

c) A Markov chain has transition probability matrix

$$P = \left(\begin{array}{rrr} 1/2 & 1/2 & 0\\ 1/3 & 1/3 & 1/3\\ 1/2 & 0 & 1/2 \end{array}\right).$$

Compute the stationary distribution of this Markov chain. The costs incurred in spending one unit period are $\pounds 4$ in state 1, $\pounds 1$ in state 2 and $\pounds 2$ in state 3. What is the long run cost per unit period of this Markov chain?

- d) Determine the following limits in terms of the transition probabilities p_{ij} and the stationary distribution π of a finite state irreducible aperiodic recurrent Markov chain.
 - (i) $\lim_{n \to \infty} \Pr(X_{n+1} = j | X_0 = i).$
 - (ii) $\lim_{n \to \infty} \Pr(X_n = k, X_{n+1} = j | X_0 = i).$
 - (iii) $\lim_{n \to \infty} \Pr(X_n = k, X_{n-1} = j | X_0 = i).$

Hint: Use the Basic Limit Theorem, the Markov property, and the fact that

$$\Pr(A \cap B|C) = \Pr(A|B \cap C)\Pr(B|C).$$
[6]

4

[4]

[8]

[7]

Let X(t) be the size of a population at time t and let X(0) = N > 0. We model X(t) as a birth and death process. Let λ_k be the birth rate at population size k and let μ_k be the death rate at population size k.

- a) State the postulates for a birth and death process.
- b) Let $P_n(t) = \Pr(X(t) = n)$. From the postulates for a birth and death process derive the differential equations

$$P'_{n}(t) = -(\lambda_{n} + \mu_{n})P_{n}(t) + \lambda_{n-1}P_{n-1}(t) + \mu_{n+1}P_{n+1}(t),$$

$$P'_{0}(t) = -\lambda_{0}P_{0}(t) + \mu_{1}P_{1}(t).$$

[8]

[3]

- c) Assume that individuals in the population give birth at rate λ and die at rate μ . What are λ_n and μ_n under these assumptions? Explain your answer. [4]
- d) Let M(t) = E(X(t)) be the expected population size at time t. Under the assumptions of part c) show that M(t) satisfies the differential equation

$$M'(t) = (\lambda - \mu)M(t)$$

and solve it. State conditions on μ and λ under which the population is expected to become extinct. [5]

e) Let X(0) = 2 and let the process be a pure death process, i.e., $\lambda_k \equiv 0$. Let $\mu_1 = 1$, $\mu_2 = 2$. Compute the probability $P_0(t)$ that the population becomes extinct at time t. *Hint:* Argue first that $P_n(t) \equiv 0$ for n > 2. [5]

5