UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS238 STOCHASTIC PROCESSES

Time allowed - 2 hrs
Autumn Semester 2006

Attempt THREE questions.
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

a) (Duration of gambler's game) Player A plays against player B. Player A starts with $£ k$ and player B with $£(N-k)$. In each play A wins $£ 1$ with probability $p>0$ and loses $£ 1$ with probability $q=1-p$. The game is over when either player has won all the money.
(i) Let $\operatorname{Pr}\left(d_{k}=n\right)$ be the probability that the game finishes after n plays. Justify the equation

$$
\operatorname{Pr}\left(d_{k}=n\right)=p \operatorname{Pr}\left(d_{k+1}=n-1\right)+q \operatorname{Pr}\left(d_{k-1}=n-1\right) .
$$

(ii) Let $D_{k}=E\left(d_{k}\right)$ be the expected duration of the game when A starts with $£ k$. Derive the equation

$$
D_{k}=p D_{k+1}+q D_{k-1}+1
$$

from part (i).
(iii) Formulate boundary conditions D_{0} and D_{N} and then solve the difference equation from (ii) for $q \neq p$.
b) Consider the Markov chain on the state space $\{0,1,2,3\}$ whose transition probability matrix is given by

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.1 & 0.4 & 0.1 & 0.4 \\
0.2 & 0.1 & 0.6 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Starting in state 1, determine the probability that the Markov chain ends in state 0 .

Question 2

a) Define the mean recurrence time μ_{i} of a state, and explain what it means for a state to be transient, recurrent, positive recurrent and null recurrent.
b) Consider a homogeneous Markov chain with state space \mathbb{Z}. Give a necessary and sufficient condition for state 0 to be recurrent in terms of the probabilities

$$
\operatorname{Pr}\left(X_{n}=0 \mid X_{0}=0\right)=p_{00}^{(n)} .
$$

c) Consider a random walk on the integers with transition probabilities

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n+1}=k+1 \mid X_{n}=k\right) & =p \\
\operatorname{Pr}\left(X_{n+1}=k-1 \mid X_{n}=k\right) & =q
\end{aligned}
$$

where $p+q=1$. Show that

$$
p_{00}^{(2 n)}=\frac{(2 n)!}{n!n!} p^{n} q^{n}, \quad p_{00}^{(2 n+1)}=0 .
$$

d) Use Stirling's approximation

$$
n!\sim n^{n} e^{-n} \sqrt{2 \pi n}
$$

to show

$$
p_{00}^{(2 n)} \sim \frac{(4 p q)^{n}}{\sqrt{\pi n}}
$$

and hence deduce that state 0 is recurrent if $p=q=\frac{1}{2}$.
e) If $p \neq q$ show that $4 p q<1$ by discussing the function $f(x)=4 x(1-x)$ for $x \in[0,1]$. Hence show that state 0 is transient.
f) For the Markov chain on the state space $\{1,2,3,4,5,6\}$ with the transition probability matrix

$$
\left(\begin{array}{cccccc}
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

determine which states are recurrent, null-recurrent, positive recurrent and which are transient.

Question 3

a) Consider a Markov chain $\left\{X_{n}\right\}$ with state space $\{0,1, \ldots, N\}$. Assume that the Markov chain starts in state i at time 0 . Give an expression for the expected number of visits $M_{j}^{(n)}$ to state j up to time n, in terms of the m-step transition probabilities $p_{i j}^{(m)}$, $0 \leq m \leq n$.
b) Show that an aperiodic, irreducible Markov chain on a finite state space $\{0,1, \ldots, N\}$ on average spends a fraction of $1 / \mu_{j}$ in state j where μ_{j} is the mean recurrence time of state j.
Hint: Compute the fraction of time spent in state j as $\lim _{n \rightarrow \infty} M_{j}^{(n)} / n$. Then use the Basic Limit Theorem and the fact that for a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ with $a_{n} \rightarrow a$ we have $\frac{1}{n} \sum_{m=1}^{n} a_{m} \rightarrow a$.
c) A Markov chain has transition probability matrix

$$
P=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2
\end{array}\right)
$$

Compute the stationary distribution of this Markov chain. The costs incurred in spending one unit period are $£ 4$ in state $1, £ 1$ in state 2 and $£ 2$ in state 3 . What is the long run cost per unit period of this Markov chain?
d) Determine the following limits in terms of the transition probabilities $p_{i j}$ and the stationary distribution π of a finite state irreducible aperiodic recurrent Markov chain.
(i) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n+1}=j \mid X_{0}=i\right)$.
(ii) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n}=k, X_{n+1}=j \mid X_{0}=i\right)$.
(iii) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n}=k, X_{n-1}=j \mid X_{0}=i\right)$.

Hint: Use the Basic Limit Theorem, the Markov property, and the fact that

$$
\operatorname{Pr}(A \cap B \mid C)=\operatorname{Pr}(A \mid B \cap C) \operatorname{Pr}(B \mid C)
$$

Question 4

Let $X(t)$ be the size of a population at time t and let $X(0)=N>0$. We model $X(t)$ as a birth and death process. Let λ_{k} be the birth rate at population size k and let μ_{k} be the death rate at population size k.
a) State the postulates for a birth and death process.
b) Let $P_{n}(t)=\operatorname{Pr}(X(t)=n)$. From the postulates for a birth and death process derive the differential equations

$$
\begin{aligned}
P_{n}^{\prime}(t) & =-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t), \\
P_{0}^{\prime}(t) & =-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t) .
\end{aligned}
$$

c) Assume that individuals in the population give birth at rate λ and die at rate μ. What are λ_{n} and μ_{n} under these assumptions? Explain your answer.
d) Let $M(t)=E(X(t))$ be the expected population size at time t. Under the assumptions of part c) show that $M(t)$ satisfies the differential equation

$$
M^{\prime}(t)=(\lambda-\mu) M(t)
$$

and solve it. State conditions on μ and λ under which the population is expected to become extinct.
e) Let $X(0)=2$ and let the process be a pure death process, i.e., $\lambda_{k} \equiv 0$. Let $\mu_{1}=1$, $\mu_{2}=2$. Compute the probability $P_{0}(t)$ that the population becomes extinct at time t. Hint: Argue first that $P_{n}(t) \equiv 0$ for $n>2$.

