MS237/6/SS08 (handouts 1)

UNIVERSITY OF SURREY[©]

B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS237 MATHEMATICAL STATISTICS

Time allowed -2 hours

Spring Semester 2008

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account. Students may use approved calculators. A formula sheet will be provided. Cambridge Statistical Tables will be provided.

SEE NEXT PAGE

Random variables X and Y have the joint probability density function

$$f_{X,Y}(x,y) = k \qquad x^3 < y < x, \quad 0 < x < 1, \quad 0 < y < 1; \\ = 0 \qquad \text{elsewhere.}$$

- (a) Sketch the region in which $f_{X,Y}(x,y)$ is non-zero and show that k = 4.
- (b) Show that the marginal density function of X is

$$f_X(x) = 4x(1-x^2)$$
 $0 < x < 1$,

and find the marginal density function of Y. Hence, or otherwise, find non-zero constants c_1 and c_2 such that $c_1 E[X] + c_2 E[Y] = 0.$ [8]

- (c) State whether X and Y are independent, giving a reason for your answer. [2]
- (d) Show that the conditional density function of Y given X = x is

$$f(y|X = x) = \frac{1}{x(1 - x^2)} \qquad x^3 < y < x, \quad 0 < x < 1, \quad 0 < y < 1.$$

Hence, obtain E(Y|X).

(e) Prove that E[E(V|U)] = E[V] for any two random variables U, V and verify that this result holds for random variables X, Y. [7]

[4]

[4]

Let X be a discrete random variable with probability mass function (p_n) . The probability generating function of X is defined by

$$P(z) = E(z^X) = \sum_n p_n z^n.$$

- (a) (i) Prove that E(X) = P'(1).
 - (ii) Prove that $\operatorname{Var}(X) = P''(1) + P'(1) \{P'(1)\}^2$.
 - (iii) Let X and Y be independent random variables with probability generating functions $P_X(z)$ and $P_Y(z)$. Prove that the probability generating function of X + Yis given by $P_{X+Y}(z) = P_X(z)P_Y(z)$. [9]
- (b) (i) Show that the probability generating function of the Geometric (π) distribution is πz

$$P(z) = \frac{\pi z}{1 - (1 - \pi)z}$$

- (ii) Hence, or otherwise, prove that the Geometric (π) distribution has mean π^{-1} and variance $(1 \pi)\pi^{-2}$. [7]
- (c) Let U and V be independent Geometric (π) random variables and let W = U + V.
 - (i) Show that if u, n are positive integers such that $u \leq n$ then

$$P\{(U = u) \cap (W = n)\} = P(U = u)P(V = n - u).$$

- (ii) Write down the probability generating function of W and find an expression for P(W = n).
- (iii) Hence or otherwise, show that the conditional probability mass function of U given W is

$$P\{(U=u) \mid (W=n)\} = \frac{1}{n-1}, \text{ for } u = 1, \cdots, n-1.$$

(iv) Consider two fair dice, one red and one blue. The blue die is thrown until a 1 is scored and then the red die is thrown until it scores a 2. Given that the total number of throws is 10, obtain the expectation of the number of throws with the red die.

SEE NEXT PAGE

[9]

Suppose that the random vector $\underline{X} = (X_1, \ldots, X_p)^T$ has mean vector $\underline{\mu} = (\mu_1, \ldots, \mu_p)^T$ and covariance matrix $\Sigma = (\sigma_{ij})$, and assume that $\underline{a} = (a_1, \ldots, a_p)^T$ and $\underline{b} = (b_1, \ldots, b_p)^T$ are *p*-vectors of real-valued non-random coefficients.

- (a) Prove that
 - (i) $E(\underline{a}^T \underline{X}) = \underline{a}^T \underline{\mu};$ [3]
 - (ii) $\operatorname{Var}(\underline{a}^T \underline{X}) = \underline{a}^T \Sigma \ \underline{a};$
 - (iii) $\operatorname{Cov}(\underline{a}^T \underline{X}, \underline{b}^T \underline{X}) = \underline{a}^T \Sigma \ \underline{b}.$
- (b) Let X_1, X_2 and X_3 be independent random variables with zero means and variances σ_1^2, σ_2^2 and σ_3^2 respectively.

The random variables Y_1, Y_2 and Y_3 are defined by

$$Y_1 = X_1 + X_2, Y_2 = X_1 - X_2, Y_3 = X_1 + 2X_2 + X_3$$

- (i) Using the results in part (a), determine the covariance matrix of $\underline{Y} = (Y_1, Y_2, Y_3)^T$. Given that Y_1 and Y_2 are mutually independent, determine the ratio of the variances $\sigma_1^2 : \sigma_2^2$. Hence obtain the correlation between Y_1 and Y_3 and the correlation between Y_2 and Y_3 . Comment on these values.
- (ii) Suppose further that X_1 and X_2 have the joint probability density function

 $f_{X_1,X_2}(x_1,x_2) = e^{-(x_1+x_2)} \quad 0 < x_1 < \infty, \quad 0 < x_2 < \infty;$ = 0 elsewhere.

Obtain the probability density function of Y_1 .

[8]

[8]

[3]

[3]

- (a) The random variable X has the $Beta(\alpha, \beta)$ probability density function.
 - (i) Show that $E[X] = \frac{\alpha}{\alpha+\beta}$ and $Var[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$. [6]
 - (ii) Show that the mode of the distribution of X is $\frac{\alpha-1}{\alpha+\beta-2}$, for $\alpha+\beta>2$. [3]
- (b) The random variable Y has probability density function

$$f_Y(y) = \frac{1}{B(\gamma, \delta)} \frac{y^{\gamma-1}}{(1+y)^{\gamma+\delta}} \qquad 0 < y < \infty;$$

= 0 elsewhere.

Find and identify the distribution of $Z = \frac{1}{1+Y}$.

(c) (i) Let X be a continuous random variable with distribution function $F_X(x)$. Write down the probability density function of the random variable $Y = F_X(X)$. [1]

- (ii) Obtain the distribution function for the $Beta(\gamma, 1)$ distribution. [4]
- (iii) The following random sample of size 5 is obtained from the U(0, 1) distribution:

0.904, 0.766, 0.384, 0.407, 0.739.

Using this sample and results from (c)(i) and (c)(ii), generate a random sample of size 5 from the Beta(3, 1) distribution. [3]

[8]

(a) Prove the Cauchy-Schwartz inequality:

$$\{E(X_1X_2)\}^2 \le E(X_1^2)E(X_2^2),\$$

for random variables X_1 and X_2 , with finite variances.

(i) Suppose further that X_1 is a positive random variable, so $P(X_1 \le 0) = 0$. Prove that

$$E\left(\frac{1}{X_1}\right) \ge \frac{1}{E(X_1)}.$$
[3]

[6]

[3]

- (ii) Prove that $-1 \leq \operatorname{Corr}(X_1, X_2) \leq 1$.
- (b) The joint probability mass function of the discrete random variables Y_1 and Y_2 is

$$p_{(Y_1, Y_2)}(y_1, y_2) = \frac{y_1 y_2}{36}$$
 for $y_1 = 1, 2, 3$ and $y_2 = 1, 2, 3;$
= 0 elsewhere.

- (i) Find the joint probability mass function of $X_1 = Y_1 Y_2$ and $X_2 = Y_2$. [6]
- (ii) Find the marginal probability mass function of X_1 and compute $E(X_1)$. [4]
- (iii) Using results from part (a), find a lower bound for $E\left(\frac{1}{2Y_1Y_2+3}\right)$. [3]