UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS237 MATHEMATICAL STATISTICS

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account.

Students may use approved calculators.
A formula sheet will be provided.
Cambridge Statistical Tables will be provided.

Question 1

Random variables X and Y have the joint probability density function

$$
\begin{aligned}
f_{X, Y}(x, y) & =k \quad x^{3}<y<x, \quad 0<x<1, \quad 0<y<1 \\
& =0 \quad \text { elsewhere. }
\end{aligned}
$$

(a) Sketch the region in which $f_{X, Y}(x, y)$ is non-zero and show that $k=4$.
(b) Show that the marginal density function of X is

$$
f_{X}(x)=4 x\left(1-x^{2}\right) \quad 0<x<1
$$

and find the marginal density function of Y. Hence, or otherwise, find non-zero constants c_{1} and c_{2} such that $c_{1} E[X]+c_{2} E[Y]=0$.
(c) State whether X and Y are independent, giving a reason for your answer.
(d) Show that the conditional density function of Y given $X=x$ is

$$
f(y \mid X=x)=\frac{1}{x\left(1-x^{2}\right)} \quad x^{3}<y<x, \quad 0<x<1, \quad 0<y<1 .
$$

Hence, obtain $E(Y \mid X)$.
(e) Prove that $E[E(V \mid U)]=E[V]$ for any two random variables U, V and verify that this result holds for random variables X, Y.

Question 2

Let X be a discrete random variable with probability mass function $\left(p_{n}\right)$. The probability generating function of X is defined by

$$
P(z)=E\left(z^{X}\right)=\sum_{n} p_{n} z^{n} .
$$

(a) (i) Prove that $E(X)=P^{\prime}(1)$.
(ii) Prove that $\operatorname{Var}(X)=P^{\prime \prime}(1)+P^{\prime}(1)-\left\{P^{\prime}(1)\right\}^{2}$.
(iii) Let X and Y be independent random variables with probability generating functions $P_{X}(z)$ and $P_{Y}(z)$. Prove that the probability generating function of $X+Y$ is given by $P_{X+Y}(z)=P_{X}(z) P_{Y}(z)$.
(b) (i) Show that the probability generating function of the Geometric (π) distribution is

$$
P(z)=\frac{\pi z}{1-(1-\pi) z} .
$$

(ii) Hence, or otherwise, prove that the Geometric (π) distribution has mean π^{-1} and variance $(1-\pi) \pi^{-2}$.
(c) Let U and V be independent Geometric (π) random variables and let $W=U+V$.
(i) Show that if u, n are positive integers such that $u \leq n$ then

$$
P\{(U=u) \cap(W=n)\}=P(U=u) P(V=n-u) .
$$

(ii) Write down the probability generating function of W and find an expression for $P(W=n)$.
(iii) Hence or otherwise, show that the conditional probability mass function of U given W is

$$
P\{(U=u) \mid(W=n)\}=\frac{1}{n-1}, \quad \text { for } u=1, \cdots, n-1 .
$$

(iv) Consider two fair dice, one red and one blue. The blue die is thrown until a 1 is scored and then the red die is thrown until it scores a 2. Given that the total number of throws is 10 , obtain the expectation of the number of throws with the red die.

Question 3

Suppose that the random vector $\underline{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$ has mean vector $\underline{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right)^{T}$ and covariance matrix $\Sigma=\left(\sigma_{i j}\right)$, and assume that $\underline{a}=\left(a_{1}, \ldots, a_{p}\right)^{T}$ and $\underline{b}=\left(b_{1}, \ldots, b_{p}\right)^{T}$ are p-vectors of real-valued non-random coefficients.
(a) Prove that
(i) $E\left(\underline{a}^{T} \underline{X}\right)=\underline{a}^{T} \underline{\mu}$;
(ii) $\operatorname{Var}\left(\underline{a}^{T} \underline{X}\right)=\underline{a}^{T} \Sigma \underline{a}$;
(iii) $\operatorname{Cov}\left(\underline{a}^{T} \underline{X}, \underline{b}^{T} \underline{X}\right)=\underline{a}^{T} \Sigma \underline{b}$.
(b) Let X_{1}, X_{2} and X_{3} be independent random variables with zero means and variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and σ_{3}^{2} respectively.
The random variables Y_{1}, Y_{2} and Y_{3} are defined by

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2}, \\
& Y_{2}=X_{1}-X_{2}, \\
& Y_{3}=X_{1}+2 X_{2}+X_{3} .
\end{aligned}
$$

(i) Using the results in part (a), determine the covariance matrix of $\underline{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{T}$. Given that Y_{1} and Y_{2} are mutually independent, determine the ratio of the variances $\sigma_{1}^{2}: \sigma_{2}^{2}$. Hence obtain the correlation between Y_{1} and Y_{3} and the correlation between Y_{2} and Y_{3}. Comment on these values.
(ii) Suppose further that X_{1} and X_{2} have the joint probability density function

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =e^{-\left(x_{1}+x_{2}\right)} \quad 0<x_{1}<\infty, \quad 0<x_{2}<\infty ; \\
& =0 \quad \text { elsewhere } .
\end{aligned}
$$

Obtain the probability density function of Y_{1}.

Question 4

(a) The random variable X has the $\operatorname{Beta}(\alpha, \beta)$ probability density function.
(i) Show that $\mathrm{E}[X]=\frac{\alpha}{\alpha+\beta}$ and $\operatorname{Var}[X]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.
(ii) Show that the mode of the distribution of X is $\frac{\alpha-1}{\alpha+\beta-2}$, for $\alpha+\beta>2$.
(b) The random variable Y has probability density function

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{B(\gamma, \delta)} \frac{y^{\gamma-1}}{(1+y)^{\gamma+\delta}} & & 0<y<\infty \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Find and identify the distribution of $Z=\frac{1}{1+Y}$.
(c) (i) Let X be a continuous random variable with distribution function $F_{X}(x)$. Write down the probability density function of the random variable $Y=F_{X}(X)$.
(ii) Obtain the distribution function for the $\operatorname{Beta}(\gamma, 1)$ distribution.
(iii) The following random sample of size 5 is obtained from the $U(0,1)$ distribution:

$$
0.904,0.766,0.384,0.407,0.739
$$

Using this sample and results from (c)(i) and (c)(ii), generate a random sample of size 5 from the $\operatorname{Beta}(3,1)$ distribution.

Question 5

(a) Prove the Cauchy-Schwartz inequality:

$$
\left\{E\left(X_{1} X_{2}\right)\right\}^{2} \leq E\left(X_{1}^{2}\right) E\left(X_{2}^{2}\right)
$$

for random variables X_{1} and X_{2}, with finite variances.
(i) Suppose further that X_{1} is a positive random variable, so $P\left(X_{1} \leq 0\right)=0$.

Prove that

$$
E\left(\frac{1}{X_{1}}\right) \geq \frac{1}{E\left(X_{1}\right)}
$$

(ii) Prove that $-1 \leq \operatorname{Corr}\left(X_{1}, X_{2}\right) \leq 1$.
(b) The joint probability mass function of the discrete random variables Y_{1} and Y_{2} is

$$
\begin{aligned}
p_{\left(Y_{1}, Y_{2}\right)}\left(y_{1}, y_{2}\right) & =\frac{y_{1} y_{2}}{36} \text { for } y_{1}=1,2,3 \text { and } y_{2}=1,2,3 ; \\
& =0 \quad \text { elsewhere. }
\end{aligned}
$$

(i) Find the joint probability mass function of $X_{1}=Y_{1} Y_{2}$ and $X_{2}=Y_{2}$.
(ii) Find the marginal probability mass function of X_{1} and compute $E\left(X_{1}\right)$.
(iii) Using results from part (a), find a lower bound for $E\left(\frac{1}{2 Y_{1} Y_{2}+3}\right)$.

