UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS237 MATHEMATICAL STATISTICS

Attempt THREE questions. If any candidate attempts more than THREE questions only the best THREE solutions will be taken into account.

A formula sheet will be provided.
Cambridge Statistical Tables will be provided.

Question 1

(a) (i) Define the probability generating function for a random variable X. Using this definition obtain an expression for $E[X]$ and for $\operatorname{Var}[X]$.
(ii) Also obtain an expression for the probability generating function for the sum of two independent random variables X_{1} and X_{2}.
(b) Let X_{1} and X_{2} be independently distributed Poisson random variables with expectations λ_{1} and λ_{2} respectively.
(i) Derive the probability generating functions of X_{1} and X_{2}.

Hence, or otherwise, show that $Z=X_{1}+X_{2}$ has a Poisson distribution with expectation $\lambda_{1}+\lambda_{2}$.
(ii) Show that if k, n are positive integers such that $k \leq n$ then

$$
P\left\{\left(X_{1}=k\right) \cap(Z=n)\right\}=P\left(X_{1}=k\right) P\left(X_{2}=n-k\right)
$$

(iii) Hence, or otherwise, show that the conditional probability

$$
P\left(X_{1}=k \mid Z=n\right)
$$

is the probability of k successes in n Bernouilli trials, where each trial has probability of success $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$.

Question 2

Random variables X and Y have the joint probability density function

$$
\begin{aligned}
f_{X, Y}(x, y) & =k x \quad x^{2}<y<x, \quad 0<x<1, \quad 0<y<1 \\
& =0 \quad \text { elsewhere }
\end{aligned}
$$

(a) Sketch the region in which $f_{X, Y}(x, y)$ is non-zero and show that $k=12$.
(b) Show that the marginal density function of X is

$$
f_{X}(x)=12 x^{2}(1-x) \quad 0<x<1
$$

(c) Find the marginal density function of Y. Also, state whether X and Y are independent, giving a reason for your answer.
(d) Find non-zero values for c_{1} and c_{2} such that $c_{1} E[X]+c_{2} E[Y]=0$.
(e) Show that the conditional density function of Y given $X=x$ is

$$
f(y \mid X=x)=\frac{1}{x(1-x)} \quad x^{2}<y<x, \quad 0<x<1, \quad 0<y<1 .
$$

(f) Calculate $E[Y]$ and $E[E[Y \mid X]]$ and comment on your answer.

Question 3

(a) (i) Prove the Cauchy-Schwartz inequality:

$$
\{E[X Y]\}^{2} \leq E\left[X^{2}\right] E\left[Y^{2}\right]
$$

for any two random variables X and Y that have finite variances.
(ii) Use the Cauchy-Schwartz inequality to prove that

$$
-1 \leq \operatorname{Corr}(X, Y) \leq 1
$$

for any two random variables X and Y with finite variances.
(iii) Let X be a random variable with variance σ^{2} and let $Y=c X$, where c is a real constant. Show that $\{E[X Y]\}^{2}$ attains the upper bound $E\left[X^{2}\right] E\left[Y^{2}\right]$ in this case.
(b) (i) Outline briefly the necessary steps required to establish Chebyshev's inequality

$$
\operatorname{pr}(|Y-\mu| \geq a) \leq \frac{\sigma^{2}}{a^{2}}
$$

where $a>0$ and μ and σ are the mean and standard deviation of Y respectively.
(ii) Suppose that Y is a discrete random variable with probability mass function given in the following table:

$$
\begin{array}{ccccc}
y & -3 & -1 & 1 & 3 \\
p(y) & \frac{3}{32} & \frac{13}{32} & \frac{13}{32} & \frac{3}{32}
\end{array}
$$

Evaluate $\operatorname{pr}\left(|Y-\mu| \geq \sqrt{\frac{5}{2}}\right)$ for this distribution. How does this probability compare with the upper bound given by Chebyshev's inequality?

Question 4

(a) The random variable X has a Beta distribution with parameters a and b, that is, $X \sim \operatorname{Beta}(a, b)$.
(i) Show that

$$
E[X(1-X)]=\frac{a b}{(a+b)(a+b+1)}
$$

(ii) Assuming that $b>1$, show that

$$
E\left[\frac{X}{1-X}\right]=\frac{a}{b-1} .
$$

(b) The random variable Y has an F distribution on m and n degrees of freedom, that is, $Y \sim F(m, n)$.
(i) Write down the probability density function of Y and hence show that

$$
W=\frac{\frac{m Y}{n}}{1+\frac{m Y}{n}}
$$

has a $\operatorname{Beta}\left(\frac{m}{2}, \frac{n}{2}\right)$ distribution.
(ii) By expressing Y in terms of W and using the results of part (a), show that $E[Y]=\frac{n}{n-2}$ for $n>2$.
(iii) Without carrying out any further calculations, explain how a similar technique could be used to obtain the variance of Y.

Question 5

Let X_{1}, \ldots, X_{n} be independent normally distributed random variables, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$.
Write $\bar{X}=n^{-1} \sum_{i} X_{i}$ and $S^{2}=(n-1)^{-1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2}$, and let \underline{X} denote the $n \times 1$ vector $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$.
(a) Show that \underline{X} has the multivariate $N_{n}\left(\mu 1_{n}, \sigma^{2} I_{n}\right)$ distribution, where $\underline{1_{n}}$ is defined as the $n \times 1$ vector all of whose elements equal unity.
(b) Let the vector $\underline{Y}=C\left(\underline{X}-\mu \underline{1_{n}}\right) / \sigma$, where C is an orthogonal matrix, i.e. a $n \times n$ matrix such that $C C^{T}=I_{n}$. Show that \underline{Y} has the multivariate $N_{n}\left(0, I_{n}\right)$ distribution, stating clearly the theorem that you require.
(b) $\left.\underline{\underline{Y}} C C^{T} \underline{\underline{X}}-\underline{1_{n}}\right) / \sigma, w h$
(c) Assume that the first row of C consists of the vector $\underline{1}_{n}{ }^{T} / \sqrt{n}$.

Show that $Y_{1}=\sqrt{n}(\bar{X}-\mu) / \sigma$ and evaluate its distribution. Hence or otherwise, show that \bar{X} has the univariate $N\left(\mu, \sigma^{2} / n\right)$ distribution.
(d) Show that

$$
\sum_{i=2}^{n} Y_{i}^{2} \text { has a } \chi_{n-1}^{2} \text { distribution. }
$$

stating clearly the theorem that you require. Hence, or otherwise, find the distribution of $(n-1) S^{2} / \sigma^{2}$.
(e) Explain why \bar{X} and S^{2} are independent random variables.
(f) Comment briefly on the distribution of

$$
T=\frac{\sqrt{n}(\bar{X}-\mu)}{s}
$$

stating clearly the theorem that you require.

