UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS224 FUNCTIONS OF A COMPLEX VARIABLE

Time allowed - 2 hrs
Spring Semester 2007

Attempt THREE questions.
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

a) What does it mean for a complex function $f(z)$ to be differentiable at $z_{0} \in \mathbb{C}$?
b) Suppose that

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

is differentiable at $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$. Show that the partial derivatives

$$
\frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y}
$$

all exist at $\left(x_{0}, y_{0}\right)$ and satisfy the Cauchy-Riemann equations.
Hint: Compute the difference quotient of

$$
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

for Δz real and Δz purely imaginary and consider the limit $\Delta z \rightarrow 0$.
c) Show that if f is complex differentiable in a domain $D \subseteq \mathbb{C}$ and either its real part $\operatorname{Re}(f)$ or its imaginary part $\operatorname{Im}(f)$ is a constant on D then f is constant on D.
d) Let

$$
f(z)= \begin{cases}\left(x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}\right) /\left(x^{2}+y^{2}\right) & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

Show that the Cauchy-Riemann equations hold at $z=0$. Is $f(z)$ differentiable at $z=0$?
Hint: Consider the difference quotient $f(\Delta z) / \Delta z$ for $\Delta z \rightarrow 0$ along the real axis and along the line $y=x$.

Question 2

a) (i) Let two functions $P(x, y)$ and $Q(x, y)$ be continuous and possess continuous first partial derivatives in some simply-connected region D of the (x, y)-plane. Let γ be a closed curve in D, which encloses an area A. Under these assumptions state the two-dimensional form of Green's Theorem (the two-dimensional form of the Divergence Theorem).
(ii) For an analytic function $f(z)=u(z)+i v(z)$ with continuous derivative f^{\prime} prove Cauchy's Theorem

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

by splitting this integral into its real and imaginary part and applying Green's Theorem.
b) (i) Show that

$$
I:=\int_{0}^{2 \pi} \frac{d \theta}{4 \cos \theta+5}=-i \int_{\gamma} \frac{d z}{2 z^{2}+5 z+2}
$$

where γ is the path $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
(ii) Decompose

$$
f(z)=\frac{1}{2 z^{2}+5 z+2}
$$

into partial fractions.
(iii) Using Cauchy's Theorem, the Contour Deformation Theorem and explicit calculation only, evaluate the integral of each partial fraction along the path γ defined in part (i). Hence show that

$$
I=\frac{2 \pi}{3} .
$$

Question 3

a) Assume that $\left|z-z_{0}\right|<r<R$ and let ζ lie on a circle around z_{0} with radius r. Compute the Taylor series of $g(z)=\frac{1}{z-\zeta}$ around $z=z_{0}$ and show that it is convergent.
b) Suppose that $f(z)$ is differentiable in the disk $\left|z-z_{0}\right|<R$. Show that for all z with $\left|z-z_{0}\right|<R$,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { where } a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} .
$$

Hint: Use the Cauchy Integral formula

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

where γ is the circle $\gamma=\left\{\zeta \in \mathbb{C},\left|\zeta-z_{0}\right|=r\right\}$ traversed in the positive sense and use part a).
c) Let Γ be the circle $|z|=2$ traversed in the positive sense. Use the Cauchy Integral formula and the Cauchy Integral formula for derivatives to compute
(i) $\int_{\Gamma} \frac{\sin 3 z}{z-\frac{\pi}{2}} d z$
(ii) $\int_{\Gamma} \frac{z e^{z}}{2 z-3} d z$
(iii) $\int_{\Gamma} \frac{e^{-z}}{(z+1)^{2}} d z$
(iv) $\int_{\Gamma} \frac{\sin z}{z^{2}(z-4)} d z$
d) (i) Given a Laurent expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{m=1}^{\infty} b_{m}\left(z-z_{0}\right)^{-m}
$$

in the annulus $R_{1}<\left|z-z_{0}\right|<R_{2}$, give an expression for the coefficients a_{n} and b_{m} which generalizes Cauchy's Integral formula.
(ii) Let $t \in \mathbb{R}$. Show that for $|z|>0$ the following Laurent expansion holds true:

$$
\exp \left\{\frac{t}{2}\left(z-\frac{1}{z}\right)\right\}=\sum_{n=-\infty}^{\infty} J_{n}(t) z^{n}
$$

where

$$
J_{n}(t)=\frac{1}{2 \pi i} \int_{\gamma} e^{\frac{t}{2}\left(z-\frac{1}{z}\right)} z^{-n-1} d z=\frac{1}{\pi} \int_{0}^{\pi} \cos (t \sin \theta-n \theta) d \theta
$$

and γ is the unit circle $|z|=1$ traversed in the positive direction.

Question 4

a) Let f be analytic in a domain D except at z_{0}, so that z_{0} is an isolated singularity. What does it mean for z_{0} to be a pole of order m, to be a removable singularity and to be an essential singularity?
b) Define the residue of an isolated singularity.
c) Let γ be the circle $|z|=5$ traversed in the positive sense. Evaluate the integral

$$
\int_{\gamma} \frac{\sin (z)}{z^{2}-4} d z
$$

by means of the Cauchy Residue Theorem.
d) Let f have an isolated singularity at z_{0}. Show that the residue of the derivative f^{\prime} at z_{0} is equal to zero.
e) Given that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

integrate $e^{-z^{2}}$ around a rectangle with vertices at $z=0, \rho, \rho+\lambda i$ and $\lambda i($ with $\lambda>0)$. Take the real part of the integrals you obtain and let $\rho \rightarrow \infty$ to derive

$$
\int_{0}^{\infty} e^{-x^{2}} \cos (2 \lambda x) d x=\frac{\sqrt{\pi}}{2} e^{-\lambda^{2}}
$$

