UNIVERSITY OF SURREY $^{\odot}$

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS224 FUNCTIONS OF A COMPLEX VARIABLE

Time allowed -2 hrs

Spring Semester 2007

Attempt THREE questions. If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

SEE NEXT PAGE

- a) What does it mean for a complex function f(z) to be differentiable at $z_0 \in \mathbb{C}$? [3]
- b) Suppose that

$$f(x+iy) = u(x,y) + iv(x,y)$$

is differentiable at $z_0 = x_0 + iy_0 \in \mathbb{C}$. Show that the partial derivatives

$$\frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y}$$

all exist at (x_0, y_0) and satisfy the Cauchy-Riemann equations. *Hint:* Compute the difference quotient of

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

for Δz real and Δz purely imaginary and consider the limit $\Delta z \to 0$. [9]

- c) Show that if f is complex differentiable in a domain $D \subseteq \mathbb{C}$ and either its real part $\operatorname{Re}(f)$ or its imaginary part $\operatorname{Im}(f)$ is a constant on D then f is constant on D. [6]
- d) Let

$$f(z) = \begin{cases} (x^{4/3}y^{5/3} + ix^{5/3}y^{4/3})/(x^2 + y^2) & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Show that the Cauchy-Riemann equations hold at z = 0. Is f(z) differentiable at z = 0?

Hint: Consider the difference quotient $f(\Delta z)/\Delta z$ for $\Delta z \to 0$ along the real axis and along the line y = x. [7]

- a) (i) Let two functions P(x, y) and Q(x, y) be continuous and possess continuous first partial derivatives in some simply-connected region D of the (x, y)-plane. Let γ be a closed curve in D, which encloses an area A. Under these assumptions state the two-dimensional form of Green's Theorem (the two-dimensional form of the Divergence Theorem).
 - (ii) For an analytic function f(z) = u(z) + iv(z) with continuous derivative f' prove Cauchy's Theorem

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

by splitting this integral into its real and imaginary part and applying Green's Theorem. [5]

b) (i) Show that

$$I := \int_{0}^{2\pi} \frac{d\theta}{4\cos\theta + 5} = -i \int_{\gamma} \frac{dz}{2z^2 + 5z + 2}$$

where γ is the path $z = e^{i\theta}, 0 \le \theta \le 2\pi$.

(ii) Decompose

$$f(z) = \frac{1}{2z^2 + 5z + 2}$$

into partial fractions.

(iii) Using Cauchy's Theorem, the Contour Deformation Theorem and explicit calculation only, evaluate the integral of each partial fraction along the path γ defined in part (i). Hence show that

$$I = \frac{2\pi}{3}$$

[8]

[5]

[3]

[4]

- a) Assume that $|z z_0| < r < R$ and let ζ lie on a circle around z_0 with radius r. Compute the Taylor series of $g(z) = \frac{1}{z-\zeta}$ around $z = z_0$ and show that it is convergent. [4]
- b) Suppose that f(z) is differentiable in the disk $|z z_0| < R$. Show that for all z with $|z z_0| < R$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, where $a_n = \frac{f^{(n)}(z_0)}{n!}$.

Hint: Use the Cauchy Integral formula

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

where γ is the circle $\gamma = \{\zeta \in \mathbb{C}, |\zeta - z_0| = r\}$ traversed in the positive sense and use part a). [5]

- c) Let Γ be the circle |z| = 2 traversed in the positive sense. Use the Cauchy Integral formula and the Cauchy Integral formula for derivatives to compute
 - (i) $\int_{\Gamma} \frac{\sin 3z}{z \frac{\pi}{2}} dz$ [1]
 - (ii) $\int_{\Gamma} \frac{ze^z}{2z-3} dz$ [2]
 - (iii) $\int_{\Gamma} \frac{e^{-z}}{(z+1)^2} dz$ [2]

(iv)
$$\int_{\Gamma} \frac{\sin z}{z^2(z-4)} dz$$
 [3]

d) (i) Given a Laurent expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{m=1}^{\infty} b_m (z - z_0)^{-m}$$

in the annulus $R_1 < |z - z_0| < R_2$, give an expression for the coefficients a_n and b_m which generalizes Cauchy's Integral formula.

(ii) Let $t \in \mathbb{R}$. Show that for |z| > 0 the following Laurent expansion holds true:

$$\exp\left\{\frac{t}{2}\left(z-\frac{1}{z}\right)\right\} = \sum_{n=-\infty}^{\infty} J_n(t)z^n,$$

where

$$J_n(t) = \frac{1}{2\pi i} \int_{\gamma} e^{\frac{t}{2}(z - \frac{1}{z})} z^{-n-1} dz = \frac{1}{\pi} \int_0^{\pi} \cos(t \, \sin\theta - n\theta) \, d\theta$$

and γ is the unit circle |z| = 1 traversed in the positive direction.

SEE NEXT PAGE

[3]

[5]

- a) Let f be analytic in a domain D except at z_0 , so that z_0 is an isolated singularity. What does it mean for z_0 to be a pole of order m, to be a removable singularity and to be an essential singularity?
- b) Define the residue of an isolated singularity.
- c) Let γ be the circle |z| = 5 traversed in the positive sense. Evaluate the integral

$$\int_{\gamma} \frac{\sin(z)}{z^2 - 4} dz$$

by means of the Cauchy Residue Theorem.

- d) Let f have an isolated singularity at z_0 . Show that the residue of the derivative f' at z_0 is equal to zero. [5]
- e) Given that

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

integrate e^{-z^2} around a rectangle with vertices at $z = 0, \rho, \rho + \lambda i$ and λi (with $\lambda > 0$). Take the real part of the integrals you obtain and let $\rho \to \infty$ to derive

$$\int_0^\infty e^{-x^2} \cos(2\lambda x) dx = \frac{\sqrt{\pi}}{2} e^{-\lambda^2}.$$

INTERNAL EXAMINER: C. WULFF EXTERNAL EXAMINER: P. GLENDINNING

[3]

[6]

[5]

[6]