UNIVERSITY OF SURREY $^{\odot}$

B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS221 OPERATIONS RESEARCH AND OPTIMIZATION

Time allowed -2 hours

Autumn Semester 2007

Answer any **three** of the four questions

If you attempt more than three questions, only your BEST THREE answers will be taken into account.

Each question carries 30 marks.

SEE NEXT PAGE

Question 1

A garden centre produces three types of fertiliser. There are 80 tons of nitrate and 90 tons of phosphate available.

To make 1000 bags of Regular Lawn fertiliser, 4 tons of nitrate and 2 tons of phosphate are needed.

To make 1000 bags of Super Lawn fertiliser, 4 tons of nitrate and 3 tons of phosphate are needed.

To make 1000 bags of Garden fertiliser, 2 tons of nitrate and 3 tons of phosphate are needed.

The profit, per 1000 bags of fertiliser, is £300 for Regular Lawn, £500 for Super Lawn and £400 for Garden. The total profit is to be maximized.

- (a) Express this problem in linear programming form, stating what each of your variables represents. [4]
- (b) Explain why it is not possible to find a basic feasible solution in which all three types of fertiliser are made. [3]
- (c) Find the optimal production plan and state the maximum profit. [10]

The garden centre now decides to produce a fourth type of fertiliser, called Easy Grow. The available resources are unchanged.

To make 1000 bags of Easy Grow, 3 tons of nitrate and 2 tons of phosphate are needed. The profit per 1000 bags of Easy Grow is $\pounds 100k$.

- (d) Find the largest value of k for which the solution in part (c) is still valid. [7]
- (e) If k = 4, find the new optimal production plan and profit.

[6]

Question 2

- (a) Let \mathbf{x} and \mathbf{y} be two points in \mathbb{R}^n . State the name for an expression of the form $(1-r)\mathbf{x}+r\mathbf{y}$ where $0 \le r \le 1$. Give a geometrical interpretation of such an expression in \mathbb{R}^2 . [4]
- (b) Let \mathbf{x}_1 and \mathbf{x}_2 be two feasible solutions of the linear programming problem

Maximize
$$z = \mathbf{c}^t \mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$

where A is an $m \times n$ real matrix, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$.

Let $L = \{(1-r)\mathbf{x}_1 + r\mathbf{x}_2 : 0 \le r \le 1\}.$

Show that all points in L are feasible for the problem.

(c) **Either** by using the dual simplex algorithm **or** by solving the dual problem graphically, solve the linear programming problem

Minimize $2x_1 + 3x_2 + 8x_3$ subject to $\begin{cases} -x_1 + 2x_2 + 6x_3 \ge -4\\ x_1 + 3x_2 - 5x_3 \ge -9 \end{cases}$ and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

Give the minimum value of z and the values of all main and surplus variables at the optimal point. [14]

(d) State the dual of the following linear programming problem: Maximize $z = \mathbf{c}^t \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, where the components of \mathbf{x} are unrestricted in sign. [4]

[8]

Question 3

(a) F_1 , F_2 and F_3 are three factories, and D_1, \ldots, D_5 are five destinations. The supplies of a commodity available at F_1 , F_2 and F_3 are 100, 160 and 140 units respectively. The quantities required at D_1, D_2, D_3, D_4, D_5 are 90, 60, 80, 100 and 70 units respectively. The delivery costs per unit between the factories and destinations, in \pounds , are as follows:

	D_1	D_2	D_3	D_4	D_5
F_1	9	3	6	7	4
F_2	7	5	2	10	6
F_3	5	4	9	8	10

The total delivery cost is to be minimized.

- (i) Use the least-cost method to construct an initial basic feasible solution for this transportation problem. [3]
- (ii) Starting from this initial solution, find the cheapest delivery plan. State the minimum cost. [11]
- (iii) The cost of transporting one unit from F_2 to D_3 is increased by $\pounds a$. Find the largest value of a for which the previous solution remains optimal. [4]
- (b) (i) Define what is meant by a **concave function** from \mathbb{R}^n to \mathbb{R} . [2]
 - (ii) Let $f(x, y) = x^3 + 3xy^2$. Find the largest subset of \mathbb{R}^2 on which f is concave. [6]
 - (iii) Let $g(\mathbf{x}) = \mathbf{b}^t \mathbf{x} + c$, where **b** is a constant vector in \mathbb{R}^n and c is a real constant. Show that g is a concave function for all $\mathbf{x} \in \mathbb{R}^n$. [4]

Question 4

- (a) State (but do not prove) the Lagrange Sufficiency Theorem for constrained minimization problems. [3]
- (b) Use the method of Lagrange multipliers to solve the following problem:

Minimize $x_1 + x_2 + x_3$ subject to $\begin{cases} x_1^2 + x_2 &= 3\\ x_1 + 3x_2 + 2x_3 &= 7. \end{cases}$

Give a clear justification that the answer you find is a minimum. [12]

- (c) Let $q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x}$, where A is an $n \times n$ real symmetric matrix and \mathbf{x} is a variable vector in \mathbb{R}^n . State how the maximum value of $q(\mathbf{x})$ subject to the constraint $\mathbf{x}^t \mathbf{x} = 1$ can be found from the matrix A, and prove this result. [8]
- (d) Use the result in (c) to determine the maximum value of $x^2 + 8xy + 7y^2$ subject to the constraint $x^2 + y^2 = 1$. Find values of x and y at which the minimum occurs. [7]

INTERNAL EXAMINER: Dr D.J. Fisher EXTERNAL EXAMINER: Prof W. Krzanowski