UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS221 OPERATIONS RESEARCH AND OPTIMIZATION

Answer any three of the four questions
If you attempt more than three questions, only your BEST THREE answers will be taken into account.

Each question carries 30 marks.

Question 1

A garden centre produces three types of fertiliser. There are 80 tons of nitrate and 90 tons of phosphate available.
To make 1000 bags of Regular Lawn fertiliser, 4 tons of nitrate and 2 tons of phosphate are needed.
To make 1000 bags of Super Lawn fertiliser, 4 tons of nitrate and 3 tons of phosphate are needed.
To make 1000 bags of Garden fertiliser, 2 tons of nitrate and 3 tons of phosphate are needed.
The profit, per 1000 bags of fertiliser, is $£ 300$ for Regular Lawn, $£ 500$ for Super Lawn and $£ 400$ for Garden. The total profit is to be maximized.
(a) Express this problem in linear programming form, stating what each of your variables represents.
(b) Explain why it is not possible to find a basic feasible solution in which all three types of fertiliser are made.
(c) Find the optimal production plan and state the maximum profit.

The garden centre now decides to produce a fourth type of fertiliser, called Easy Grow. The available resources are unchanged.
To make 1000 bags of Easy Grow, 3 tons of nitrate and 2 tons of phosphate are needed. The profit per 1000 bags of Easy Grow is $£ 100 k$.
(d) Find the largest value of k for which the solution in part (c) is still valid.
(e) If $k=4$, find the new optimal production plan and profit.

Question 2

(a) Let \mathbf{x} and \mathbf{y} be two points in \mathbb{R}^{n}. State the name for an expression of the form $(1-r) \mathbf{x}+r \mathbf{y}$ where $0 \leq r \leq 1$. Give a geometrical interpretation of such an expression in \mathbb{R}^{2}.
(b) Let \mathbf{x}_{1} and \mathbf{x}_{2} be two feasible solutions of the linear programming problem

$$
\text { Maximize } z=\mathbf{c}^{t} \mathbf{x} \text { subject to } \mathrm{A} \mathbf{x} \leq \mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}
$$

where A is an $m \times n$ real matrix, $\mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{c}, \mathbf{x} \in \mathbb{R}^{n}$.
Let $L=\left\{(1-r) \mathbf{x}_{1}+r \mathbf{x}_{2}: 0 \leq r \leq 1\right\}$.
Show that all points in L are feasible for the problem.
(c) Either by using the dual simplex algorithm or by solving the dual problem graphically, solve the linear programming problem

$$
\begin{array}{lc}
\text { Minimize } & 2 x_{1}+3 x_{2}+8 x_{3} \\
\text { subject to } & \left\{\begin{array}{r}
-x_{1}+2 x_{2}+6 x_{3} \geq \\
x_{1}+3 x_{2}-5 x_{3} \geq
\end{array}\right. \\
\text { and } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{array}
$$

Give the minimum value of z and the values of all main and surplus variables at the optimal point.
(d) State the dual of the following linear programming problem:

Maximize $z=\mathbf{c}^{t} \mathbf{x}$ subject to $\mathrm{A} \mathbf{x} \leq \mathbf{b}$, where the components of \mathbf{x} are unrestricted in sign.

Question 3

(a) F_{1}, F_{2} and F_{3} are three factories, and D_{1}, \ldots, D_{5} are five destinations. The supplies of a commodity available at F_{1}, F_{2} and F_{3} are 100,160 and 140 units respectively. The quantities required at $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ are $90,60,80,100$ and 70 units respectively.
The delivery costs per unit between the factories and destinations, in $£$, are as follows:

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
F_{1}	9	3	6	7	4
F_{2}	7	5	2	10	6
F_{3}	5	4	9	8	10

The total delivery cost is to be minimized.
(i) Use the least-cost method to construct an initial basic feasible solution for this transportation problem.
(ii) Starting from this initial solution, find the cheapest delivery plan. State the minimum cost.
(iii) The cost of transporting one unit from F_{2} to D_{3} is increased by $£ a$. Find the largest value of a for which the previous solution remains optimal.
(b) (i) Define what is meant by a concave function from \mathbb{R}^{n} to \mathbb{R}.
(ii) Let $\mathrm{f}(x, y)=x^{3}+3 x y^{2}$. Find the largest subset of \mathbb{R}^{2} on which f is concave. [6]
(iii) Let $\mathrm{g}(\mathbf{x})=\mathbf{b}^{t} \mathbf{x}+c$, where \mathbf{b} is a constant vector in \mathbb{R}^{n} and c is a real constant.

Show that g is a concave function for all $\mathrm{x} \in \mathbb{R}^{n}$.

Question 4

(a) State (but do not prove) the Lagrange Sufficiency Theorem for constrained minimization problems.
(b) Use the method of Lagrange multipliers to solve the following problem:

$$
\begin{aligned}
& \text { Minimize } x_{1}+x_{2}+x_{3} \\
& \text { subject to }\left\{\begin{array}{r}
x_{1}{ }^{2}+x_{2} \\
x_{1}+3 x_{2}+2 x_{3}=3
\end{array}\right.
\end{aligned}
$$

Give a clear justification that the answer you find is a minimum.
(c) Let $q(\mathbf{x})=\mathbf{x}^{t} \mathbf{A} \mathbf{x}$, where A is an $n \times n$ real symmetric matrix and \mathbf{x} is a variable vector in \mathbb{R}^{n}. State how the maximum value of $q(\mathbf{x})$ subject to the constraint $\mathbf{x}^{t} \mathbf{x}=1$ can be found from the matrix A, and prove this result.
(d) Use the result in (c) to determine the maximum value of $x^{2}+8 x y+7 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$. Find values of x and y at which the minimum occurs.

