UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS218 REAL ANALYSIS 2

Time allowed - 2 hrs
Autumn Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) Let $f: A \rightarrow \mathbb{R}$ and $x_{0} \in A$. State and prove the property that relates $\lim _{x \rightarrow x_{0}} f(x)$ with $\lim _{x \rightarrow x_{0}^{+}} f(x)$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)$.
(b) Let f be a function defined on an open interval I , and $c \in I$. Prove that, if f is continuous at c and $f(c)>0$, then there is an open interval $J \subset I$ such that $c \in J$ and $f(x)>0$, for any $x \in J$.
(c) Given that f and g are continuous functions from \mathbb{R} to \mathbb{R} and that $f(x)=g(x)$ for every rational number x, prove that $f=g$.
(d) State Taylor's theorem.
(e) Determine the second order Taylor polynomial of $\sqrt{x^{2}+1}$ about $x=-1$.

Question 2

(a) State L'Hôpital's Rule.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

Show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
(c) Let f be as in part (b) and g be given by $g(x)=\sin x$. Show that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

(d) State the Intermediate Value Theorem.
(e) Suppose that $a_{1}+a_{2}+\ldots+a_{n}=2$. Show that there is some $c \in(0,1)$ such that $a_{1} c+a_{2} c^{2}+\ldots+a_{n} c^{n}=1$.
(f) Suppose that f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b) and that $f^{\prime}(x)=0$ for all $x \in(a, b)$. Prove that f is constant on $[a, b]$.

Question 3

(a) State the Mean Value Theorem for integrals.
(b) Let $I=[a, b]$ and let f, g be continuous functions on I and such that

$$
\int_{a}^{b} f=\int_{a}^{b} g
$$

Prove that there is a $c \in I$ such that $f(c)=g(c)$.
(c) Prove that, if f is monotonically increasing on $[a, b]$ then f is Riemann integrable on $[a, b]$.
(d) Let f be a twice differentiable function on an interval I. Show that if $f^{\prime \prime}(x)>0$ for all $x \in I$, then f^{\prime} is strictly increasing.
(e) Suppose that f is defined on an open interval S and that f is twice differentiable with $f^{\prime \prime}(x)<0$ for every $x \in S$. Suppose that $a, b \in S$ and that $a<b$. Let

$$
g(x)=f(x)-f(a)-\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)
$$

for all $x \in[a, b]$.
(i) State Rolle's Theorem.
(ii) Prove that there exists a number $c \in(a, b)$ such that $g^{\prime}(c)=0$.
(iii) Prove that the function g^{\prime} is strictly decreasing on the interval $[a, b]$.
(iv) Prove that $g(x)>0$ for all $x \in(a, b)$.

Question 4

(a) State the Fundamental Theorem of Calculus.
(b) Let $I=[0,1]$ and let $f: I \rightarrow \mathbb{R}$ be continuous. Suppose that

$$
\int_{0}^{x} f=\int_{x}^{1} f
$$

for all $x \in I$. Prove that $f(x)=0$ for all $x \in I$.
(c) Let $I=[a, b]$ and let f, g, h be bounded functions on I to \mathbb{R}. Suppose that

$$
f(x) \leq g(x) \leq h(x)
$$

for all $x \in I$. Show that if f and h are integrable on I and if

$$
\int_{a}^{b} f=\int_{a}^{b} h
$$

then g is also integrable on I and

$$
\int_{a}^{b} f=\int_{a}^{b} g
$$

(d) Use the Mean Value Theorem to prove that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
(e) What does it mean to say that $\lim _{x \rightarrow \infty} f(x)=L$?
(f) Show that, if $f:(a, \infty) \rightarrow \mathbb{R}$ is such that $\lim _{x \rightarrow \infty} x f(x)=L$ where $L \in \mathbb{R}$, then $\lim _{x \rightarrow \infty} f(x)=0$.

