UNIVERSITY OF SURREY[©]

1

B. Sc. Undergraduate Programmes in Mathematical Studies

MMath Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS218 $\,$ REAL ANALYSIS 2 $\,$

Time allowed - $2\ {\rm hrs}$

Autumn Semester 2006

Attempt THREE questions If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

SEE NEXT PAGE

Question 1

(a) Let $A \subset \mathbb{R}$. Define what it means to say that a function $f : A \to \mathbb{R}$ is uniform continuous in A.

 $\mathbf{2}$

- (b) Define $g: [0,\infty) \to \mathbb{R}$ to be $g(x) = \sqrt{x}$. Show that g is uniform continuous in $[0,\infty)$. You may use without proof that for $a, b \ge 0$, we have $\sqrt{a+b} \le 0$ $\sqrt{a} + \sqrt{b}$, hence $\sqrt{a+b} - \sqrt{a} \le \sqrt{b}$. [5]
- (c) Define $h: [-1,1] \to \mathbb{R}$ to be $h(x) = \sqrt{(\sin \pi x + x^3)^2}$. Which theorem will ensure that h has a minimum and a maximum on [-1, 1]? Verify all conditions of this theorem. Explain why the maximum of h will be in (-1, 1), without differentiating h.
- (d) State the Mean Value Theorem.

Let $A \subset \mathbb{R}$. A function $f : A \to \mathbb{R}$ is called *Lipschitz continuous* at $x_0 \in A$ if there is a K > 0 and some $\delta > 0$ such that $|f(x) - f(x_0)| \leq K |x - x_0|$ for all $x \in A$ with $0 < |x - x_0| < \delta.$

- (e) Show that if f is differentiable for every $x_0 \in A$ with f' a continuous function, then f is Lipschitz continuous at every $x_0 \in A$.
- (f) Show that $g: [0,\infty) \to \mathbb{R}$ with $g(x) = \sqrt{x}$ is Lipschitz continuous at any $x_0 > 0$, but not Lipschitz continuous at $x_0 = 0$. [4]

Question 2

- (a) Define $f:(0,\infty)\to\mathbb{R}$ to be $f(x)=\ln x$. Using the definition of a derivative, show that $f'(x) = \frac{1}{x}$ for x > 0. You may use without proof that $\lim_{y \to 0} \frac{\ln(1+y)}{y} = 1$. $\left[5\right]$
- (b) Let $q: \mathbb{R} \to \mathbb{R}$ be a four times differentiable function. What is the third order Taylor polynomial of q about x = a?
- (c) Define $g: (0,1) \to \mathbb{R}$ as $g(x) = (2x^2 + 1) \ln(2x^2 1)$. Determine the second order Taylor polynomial about x = 1. [3]
- (d) Show that every differentiable function is continuous.

Let $h: [-1,1] \to \mathbb{R}$ be such that any derivative $h^{(m)}, m \in \mathbb{N}$, exists (i.e., h is infinitely differentiable) and there is some C > 0 such that

$$\left|h^{(m)}(x)\right| \le Cm! \, |x|^m$$

for any $x \in [-1, 1]$ and $m \in \mathbb{N}$.

- (e) Show that this implies that $h^{(m)}(0) = 0$ for any $m \in \mathbb{N}$ and determine the Taylor polynomial about x = 0 and the remainder of Taylor's Theorem (of order $n, n \in \mathbb{N}$) for this function.
- (f) Show that h(x) = 0, for any $x \in [-1, 1]$.

[5]

 $\left[5\right]$

[3]

Question 3

A function $f : \mathbb{R} \to \mathbb{R}$ is called *even* if f(-x) = f(x) for all $x \in \mathbb{R}$ and is called *odd* if f(-x) = -f(x) for all $x \in \mathbb{R}$.

- (a) Let $f : A \to \mathbb{R}$ be a function. What does it mean to say that the derivative f'(x) exist for some $x \in A$ and what is f'(x)?
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable odd function. Using the definition of a derivative, show that f' is an even function. [5]
- (c) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function for which f' is an even function. Does this imply that f is an odd function? Give a proof if this is the case or give a counter example if this is not the case. [3]
- (d) Let $f : [a, b] \to \mathbb{R}$ be a bounded function and let D be a dissection of [a, b]. What is the upper sum $\mathcal{U}(f, D)$ and the lower sum $\mathcal{L}(f, D)$? [3]

Let $f : [a, b] \to \mathbb{R}$ be a bounded function, which is Riemann integrable. Define $g : [-b, -a] \to \mathbb{R}$ as g(x) = f(-x) for $x \in [-b, -a]$.

- (e) Let $D = \{x_0, \dots, x_{n+1}\}$ be a dissection of [a, b] and define the dissection $\widehat{D} = \{-x_{n+1}, \dots, -x_0\}$ of [-b, -a]. Show that $\mathcal{U}(f, D) = \mathcal{U}(g, \widehat{D})$. [3]
- (f) Using upper and lower sums or otherwise, show that $\int_{a}^{b} f = \int_{-b}^{-a} g.$ [4]
- (g) Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function, which is Riemann integrable function on any interval [a, b]. Show that if f is odd, then the function $F(x) = \int_a^x f$ is even, for any $a \in \mathbb{R}$. [5]

[2]

Question 4

- (a) Show that if $f : [a, b] \to \mathbb{R}$ is a bounded, Riemann integrable function, then $F : [a, b] \to \mathbb{R}$ with $F(x) = \int_a^x f$ is a continuous function. [4]
- (b) Let $N \in \mathbb{N}$ and define $g : [-N, N] \to \mathbb{R}$ as g(x) = 1, if $x \neq 0$ and g(0) = 0. Using upper and lower sums or otherwise, show that g is Riemann integrable and find $\int_{-N}^{N} g$. [3]
- (c) Define the function $f_1: [0,1] \to \mathbb{R}$ as

$$f_1(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0, 1], \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \cap [0, 1] \end{cases}$$

- (i) Show that $\mathcal{U}(f_1, D) = 1$ and $\mathcal{L}(f_1, D) = 0$ for any dissection D of [0, 1].
- (ii) Is f_1 Riemann integrable? If it is, find the integral $\int_0^1 f_1$ and otherwise, explain why it is isn't. [6]
- (d) Define the function $f_2: [0,1] \to \mathbb{R}$ as

$$f_2(x) = \begin{cases} \frac{1}{q}, & x \in \mathbb{Q} \cap [0,1], \text{ with } x = \frac{p}{q}, \text{ and } p, q \text{ no common divisors,} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \cap [0,1]. \end{cases}$$

- (i) Show that $\mathcal{L}(f_2, D) = 0$ for any dissection D of [0, 1].
- (ii) Let $D_4 = \{0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1\}$. Show that $\mathcal{U}(f_2, D_4) < \frac{1}{4}$.
- (iii) For any $N \in \mathbb{N}$, find a dissection D_N of [0,1] such that $\mathcal{U}(f_2, D) < \frac{1}{N}$.
- (iv) Show that f_2 Riemann integrable on any interval [0, y] with $0 < y \le 1$ and find $F_2(y) = \int_0^y f_2$.
- (v) Show that $F_2(y)$ is differentiable and determine its derivative. How does this relate to the Fundamental Theorem of Calculus? [10]
- (e) Is $g \circ f_2$ Riemann integrable? If it is, find the integral $\int_0^1 g \circ f_2$ and otherwise, explain why it is isn't. [2]

INTERNAL EXAMINER: G. DERKS EXTERNAL EXAMINER: P. GLENDINNING