UNIVERSITY OF SURREY ${ }^{\text {© }}$

B. Sc. Undergraduate Programmes in Mathematical Studies MMath Undergraduate Programmes in Mathematical Studies
Level HE2 Examination
\section*{Module MS218 REAL ANALYSIS 2}

Question 1

(a) Let $A \subset \mathbb{R}$. Define what it means to say that a function $f: A \rightarrow \mathbb{R}$ is uniform continuous in A.
(b) Define $g:[0, \infty) \rightarrow \mathbb{R}$ to be $g(x)=\sqrt{x}$. Show that g is uniform continuous in $[0, \infty)$. You may use without proof that for $a, b \geq 0$, we have $\sqrt{a+b} \leq$ $\sqrt{a}+\sqrt{b}$, hence $\sqrt{a+b}-\sqrt{a} \leq \sqrt{b}$.
(c) Define $h:[-1,1] \rightarrow \mathbb{R}$ to be $h(x)=\sqrt{\left(\sin \pi x+x^{3}\right)^{2}}$. Which theorem will differentiating h.
(d) State the Mean Value Theorem.

Let $A \subset \mathbb{R}$. A function $f: A \rightarrow \mathbb{R}$ is called Lipschitz continuous at $x_{0} \in A$ if there is a $K>0$ and some $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq K\left|x-x_{0}\right|$ for all $x \in A$ with $0<\left|x-x_{0}\right|<\delta$.
(e) Show that if f is differentiable for every $x_{0} \in A$ with f^{\prime} a continuous function, then f is Lipschitz continuous at every $x_{0} \in A$.
(f) Show that $g:[0, \infty) \rightarrow \mathbb{R}$ with $g(x)=\sqrt{x}$ is Lipschitz continuous at any $x_{0}>0$, but not Lipschitz continuous at $x_{0}=0$.

Question 2

(a) Define $f:(0, \infty) \rightarrow \mathbb{R}$ to be $f(x)=\ln x$. Using the definition of a derivative, show that $f^{\prime}(x)=\frac{1}{x}$ for $x>0$. You may use without proof that $\lim _{y \rightarrow 0} \frac{\ln (1+y)}{y}=1$.
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a four times differentiable function. What is the third order Taylor polynomial of g about $x=a$?
(c) Define $g:(0,1) \rightarrow \mathbb{R}$ as $g(x)=\left(2 x^{2}+1\right) \ln \left(2 x^{2}-1\right)$. Determine the second order Taylor polynomial about $x=1$.
(d) Show that every differentiable function is continous.

Let $h:[-1,1] \rightarrow \mathbb{R}$ be such that any derivative $h^{(m)}, m \in \mathbb{N}$, exists (i.e., h is infinitely differentiable) and there is some $C>0$ such that

$$
\left|h^{(m)}(x)\right| \leq C m!|x|^{m}
$$

for any $x \in[-1,1]$ and $m \in \mathbb{N}$.
(e) Show that this implies that $h^{(m)}(0)=0$ for any $m \in \mathbb{N}$ and determine the Taylor polynomial about $x=0$ and the remainder of Taylor's Theorem (of order $n, n \in \mathbb{N}$) for this function.
(f) Show that $h(x)=0$, for any $x \in[-1,1]$.

Question 3

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$ and is called odd if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
(a) Let $f: A \rightarrow \mathbb{R}$ be a function. What does it mean to say that the derivative $f^{\prime}(x)$ exist for some $x \in A$ and what is $f^{\prime}(x)$?
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable odd function. Using the definition of a derivative, show that f^{\prime} is an even function.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function for which f^{\prime} is an even function. Does this imply that f is an odd function? Give a proof if this is the case or give a counter example if this is not the case.
(d) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and let D be a dissection of $[a, b]$. What is the upper sum $\mathcal{U}(f, D)$ and the lower sum $\mathcal{L}(f, D)$?

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, which is Riemann integrable. Define $g:[-b,-a] \rightarrow \mathbb{R}$ as $g(x)=f(-x)$ for $x \in[-b,-a]$.
(e) Let $D=\left\{x_{0}, \ldots, x_{n+1}\right\}$ be a dissection of $[a, b]$ and define the dissection $\widehat{D}=$ $\left\{-x_{n+1}, \ldots,-x_{0}\right\}$ of $[-b,-a]$. Show that $\mathcal{U}(f, D)=\mathcal{U}(g, \widehat{D})$.
(f) Using upper and lower sums or otherwise, show that $\int_{a}^{b} f=\int_{-b}^{-a} g$.
(g) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function, which is Riemann integrable function on any interval $[a, b]$. Show that if f is odd, then the function $F(x)=\int_{a}^{x} f$ is even, for any $a \in \mathbb{R}$.

Question 4

(a) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is a bounded, Riemann integrable function, then $F:[a, b] \rightarrow \mathbb{R}$ with $F(x)=\int_{a}^{x} f$ is a continuous function.
(b) Let $N \in \mathbb{N}$ and define $g:[-N, N] \rightarrow \mathbb{R}$ as $g(x)=1$, if $x \neq 0$ and $g(0)=0$. Using upper and lower sums or otherwise, show that g is Riemann integrable and find $\int_{-N}^{N} g$.
(c) Define the function $f_{1}:[0,1] \rightarrow \mathbb{R}$ as

$$
f_{1}(x)= \begin{cases}1, & x \in \mathbb{Q} \cap[0,1] \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q} \cap[0,1]\end{cases}
$$

(i) Show that $\mathcal{U}\left(f_{1}, D\right)=1$ and $\mathcal{L}\left(f_{1}, D\right)=0$ for any dissection D of $[0,1]$.
(ii) Is f_{1} Riemann integrable? If it is, find the integral $\int_{0}^{1} f_{1}$ and otherwise, explain why it is isn't.
(d) Define the function $f_{2}:[0,1] \rightarrow \mathbb{R}$ as

$$
f_{2}(x)= \begin{cases}\frac{1}{q}, & x \in \mathbb{Q} \cap[0,1], \text { with } x=\frac{p}{q}, \text { and } p, q \text { no common divisors, } \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q} \cap[0,1] .\end{cases}
$$

(i) Show that $\mathcal{L}\left(f_{2}, D\right)=0$ for any dissection D of $[0,1]$.
(ii) Let $D_{4}=\left\{0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1\right\}$. Show that $\mathcal{U}\left(f_{2}, D_{4}\right)<\frac{1}{4}$.
(iii) For any $N \in \mathbb{N}$, find a dissection D_{N} of $[0,1]$ such that $\mathcal{U}\left(f_{2}, D\right)<\frac{1}{N}$.
(iv) Show that f_{2} Riemann integrable on any interval $[0, y]$ with $0<y \leq 1$ and find $F_{2}(y)=\int_{0}^{y} f_{2}$.
(v) Show that $F_{2}(y)$ is differentiable and determine its derivative. How does this relate to the Fundamental Theorem of Calculus?
(e) Is $g \circ f_{2}$ Riemann integrable? If it is, find the integral $\int_{0}^{1} g \circ f_{2}$ and otherwise, explain why it is isn't.

