UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS217 Linear Partial Differential Equations

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) Find the general solution of

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<\ell, \quad t>0 \\
u(0, t) & =0=u_{x}(\ell, t), \quad t>0 .
\end{aligned}
$$

Briefly describe its limit as $t \rightarrow \infty$.
(b) (i) State the definition of pointwise and uniform convergence for a series of functions, $\sum_{n=1}^{\infty} f_{n}(x)$ converging to $f(x)$, on an interval $[0, \ell]$.
(ii) Consider a function $f(x)$ that is 2ℓ periodic, where both $f(x)$ and $f^{\prime}(x)$ are piecewise continuous and which has exactly one jump discontinuity on each interval of length 2ℓ. What is the limit of the Fourier series of f ? Does it converge to its limit uniformly, pointwise, or neither?
(c) Show that the equation

$$
2 u_{x x}-7 u_{x y}-4 u_{y y}=0, \quad(x, y) \in \mathbb{R}^{2}
$$

is hyperbolic and find its general solution.

Question 2

(a) Compute the Fourier cosine series of the function

$$
f(x)= \begin{cases}0 & \text { if } 0<x<2 \\ 2 & \text { if } 2<x<3\end{cases}
$$

on the interval $(0,3)$.
(b) Suppose that both u_{1} and u_{2} are solutions to

$$
\begin{aligned}
\Delta u & =g & & x \in D \\
u & =h & & x \in \partial D
\end{aligned}
$$

where g and h are given continuous functions, and D is a smooth domain in \mathbb{R}^{2}. Prove that $u_{1}=u_{2}$.
(c) Consider the equation

$$
\begin{aligned}
u_{t} & =u_{x x}+a u_{x}+b u, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =u_{0}(x),
\end{aligned}
$$

where $u_{0}(x)$ is a given continuous and rapidly decaying function and a and b are fixed constants. Use the Fourier transform to find an expression for the solution of this equation in terms of the initial data $u_{0}(x)$. Note: you do not need to evaluate the inverse Fourier transform that appears in the solution you get.
(d) Recall that the solution to the heat equation

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^{2}}{4 t}} u_{0}(y) \mathrm{d} y
$$

Prove that, if $\left|u_{0}(x)\right|<M$ for all $x \in \mathbb{R}$ for some constant M, then there exists a constant K such that

$$
|u(x, t)| \leq K
$$

for all $x \in \mathbb{R}$ and $t>0$.

Question 3

(a) Construct the general bounded solution of $\Delta u=0$ on the exterior disk D given by

$$
D=\{(r, \theta): 0 \leq \theta<2 \pi, \quad r>a\} .
$$

Note that the Laplacian in polar coordinates is given by

$$
\triangle u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

(b) Suppose that u is a solution of

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<\ell, t>0 \\
u(0, t) & =0=u(\ell, t), \quad t>0 \\
u(x, 0) & =g(x), \quad 0<x<\ell
\end{aligned}
$$

where $g(x)>0$ for all $x \in[0, \ell]$. Prove that $u(x, t) \geq 0$ for all $t>0$ and all $x \in(0, \ell)$.
(c) Consider the following four figures, each containing a solution at time $t=0$ (dotted curve) and $t=1$ (solid curve).
(i) For each figure, state whether the solution could correspond to a solution of the heat equation. Justify your answer.
(ii) For each figure, state whether the solution could correspond to a solution of the wave equation. Justify your answer.

(i)

(iii)

(ii)

Question 4

(a) (i) Find the general solution of

$$
\begin{equation*}
(x+1) u_{x}+3 u_{y}=0 \tag{1}
\end{equation*}
$$

and plot the characteristics.
(ii) Find the solution of (1) that satisfies $u(x, 0)=\sin (x+1)$.
(iii) Can you prescribe values for $u(x, y)$ arbitrarily along the curve Γ, written below? Justify your answer.

$$
\Gamma=\left\{(x, y): x=y^{2}-1\right\}
$$

(b) Consider the function $g(x)=x(1-x)$ on the interval [0,1$]$. Describe the convergence
of its Fourier sine and cosine series on $(0,1)$. Which would have better convergence properties on $[0,1]$ and why? (Note: you do not need to compute the Fourier sine or cosine series for g.)
(c) Suppose that $u(x, y)$ satisfies $\triangle u=0$ inside the disk $x^{2}+y^{2}<1$ in \mathbb{R}^{2}, that u is continuous in $x^{2}+y^{2} \leq 1$, and that on the boundary $x^{2}+y^{2}=1$

$$
u(x, y)=1+2 y
$$

Calculate $u(0,0)$.
(d) Prove that, if $u(x, t)$ is a solution to the heat equation with Dirichlet boundary conditions:

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<\ell, \quad t>0 \\
u(0, t) & =0=u(\ell, t), \quad t>0,
\end{aligned}
$$

then the energy

$$
E(t)=\int_{0}^{\ell} u^{2}(x, t) \mathrm{d} x
$$

is decreasing for all $t>0$.

