UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS217 LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Time allowed - 2 hrs
Spring Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions, only the best THREE questions will be taken into account.

Question 1

(a) State the mean-value property and the maximum principle for harmonic functions.
(b) Suppose that u_{1} and u_{2} satisfy

$$
\Delta u_{j}=0 \quad \text { for } x \in D
$$

for $j=1,2$ with

$$
\left.u_{1}\right|_{\partial D}=g_{1},\left.\quad u_{2}\right|_{\partial D}=g_{2}
$$

where g_{1} and g_{2} are given continuous functions with $g_{1}(x) \leq g_{2}(x)$ for all x, and D is a smooth domain in \mathbb{R}^{2}. Prove that

$$
\begin{equation*}
\max _{x \in D}\left|u_{1}(x)-u_{2}(x)\right| \leq \max _{x \in \partial D}\left|g_{1}(x)-g_{2}(x)\right| . \tag{6}
\end{equation*}
$$

(c) Construct the general solution of $\Delta u=0$ on the half disk D given by

$$
D=\{(x, y)=(r \cos \varphi, r \sin \varphi) ; 0<\varphi<\pi, 0<r<1\}
$$

with boundary conditions as indicated here:

Note that the Laplace operator in polar coordinates is given by

$$
\begin{equation*}
\Delta u=u_{r r}+\frac{u_{r}}{r}+\frac{u_{\varphi \varphi}}{r^{2}} . \tag{15}
\end{equation*}
$$

Question 2

(a) (i) Calculate the Fourier series of the function

$$
f(x)= \begin{cases}0 & 0<x<1 \\ 2 & 1<x<2\end{cases}
$$

extended with period 2 to the real line.
(ii) What can you say about the convergence of the Fourier series, and its limit?
(iii) Plot the function $f(x)$ together with its even and odd extensions on the interval $[-4,4]$.
(b) Prove that the sequence $f_{n}(x):=x^{n}$ converges uniformly to $f(x)=0$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ as $n \rightarrow \infty$.
(c) Use Fourier transform to find an expression for the solution of

$$
\begin{aligned}
u_{t} & =-u_{x x x x}, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}
$$

where u_{0} is a given continuous and rapidly decaying function. You do not need to explicitly compute the inverse Fourier transform of the solution you get.
(d) The solution to the heat equation

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =u_{0}(x)
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} \exp \left(\frac{-(x-y)^{2}}{4 t}\right) u_{0}(y) \mathrm{d} y
$$

For the initial condition

$$
u_{0}(x)= \begin{cases}1 & |x|<1 \\ 0 & |x| \geq 1\end{cases}
$$

prove that

$$
\begin{equation*}
u(x, t)>0 \quad \forall x \in \mathbb{R}, \quad \forall t>0 \tag{4}
\end{equation*}
$$

Question 3

(a) (i) Find the general solution of

$$
\begin{equation*}
4 u_{x}+3 y u_{y}=0, \quad(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

and plot the characteristics.
(ii) Find the solution of (1) that satisfies $u(4 / 3, y)=y$.
(iii) Can you prescribe values for $u(x, y)$ arbitrarily along the circle $\Gamma=\left\{(x, y) ; x^{2}+y^{2}=1\right\}$? Justify your answer.
(b) Show that the equation

$$
2 u_{x x}-9 u_{x t}-5 u_{t t}=0, \quad(x, t) \in \mathbb{R}^{2}
$$

is hyperbolic and find its general solution.
(c) Find the general solution of the equation

$$
u_{x}+u_{y}=u, \quad(x, y) \in \mathbb{R}^{2} .
$$

Question 4

(a) Find the general solution of

$$
\begin{aligned}
u_{t} & =u_{x x}-u, & & 0<x<\ell, \quad t>0 \\
u_{x}(0, t) & =0=u_{x}(\ell, t), & & t>0 .
\end{aligned}
$$

What is the limit of the general solution as $t \rightarrow \infty$?
(b) Use the energy method to show that $u(x, t)=0$ is the only solution to

$$
\begin{aligned}
u_{t} & =u_{x x}-u, \quad 0<x<1, \quad t>0 \\
u(0, t) & =0 \\
u(1, t) & =0 \\
u(x, 0) & =0
\end{aligned}
$$

(c) Which of the graphs indicated below can correspond to a solution to the heat equation?
(Multiple "yes" answers are possible; justify your answers):

