UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS216 FLUID MECHANICS

Time allowed - 2 hrs
Spring Semester 2006

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) Give a brief explanation of the boundary conditions that apply where a fluid is in contact with a solid surface. You should deal with both viscous and inviscid fluids.
(b) Use Cartesian coordinates to prove the following identities:
(i) $\nabla \times(\nabla f)=\mathbf{0}$;
(ii) $\nabla \cdot(\nabla \times \mathbf{F})=0$.
(c) Let V be a volume that is bounded by a solid simple closed surface ∂V. Use the Divergence Theorem,

$$
\int_{V} \nabla \cdot \mathbf{F} \mathrm{~d} \mathbf{x}=\int_{\partial V} \mathbf{n} \cdot \mathbf{F} \mathrm{~d} S
$$

to show that

$$
\int_{V} \nabla \times \mathbf{F} \mathrm{d} \mathbf{x}=\int_{\partial V} \mathbf{n} \times \mathbf{F} \mathrm{d} S
$$

(d) Show that if \mathbf{u} is a potential flow of an inviscid fluid in V then

$$
\int_{\partial V} \mathbf{n} \times \mathbf{u} \mathrm{d} S=\mathbf{0}
$$

Explain why this result does not contradict the idea that inviscid fluids can move along a solid boundary.

Question 2

This question deals with steady two-dimensional unidirectional flow of an incompressible viscous fluid in a channel $\{(x, y, z): y \in[-a, a], x, z \in \mathbb{R}\}$ with solid walls.
(a) State the Navier-Stokes equation for incompressible flow. Show that if the flow is $\mathbf{u}=u \mathbf{e}_{\mathbf{x}}$ then u is a function of y only and the Navier-Stokes equation reduces to

$$
-p_{, x}+\mu u_{, y y}=0, \quad p_{, y}=p_{, z}=0
$$

(b) Show that if the channel walls are stationary and that the pressure gradient $G=-p_{, x}$ is a positive constant then

$$
\begin{equation*}
u(y)=\frac{G}{2 \mu}\left(a^{2}-y^{2}\right) . \tag{5}
\end{equation*}
$$

(c) Now suppose that the wall $y=a$ moves with velocity $U \mathbf{e}_{\mathbf{x}}$, that the wall $y=-a$ moves with velocity $-U \mathbf{e}_{\mathbf{x}}$, and that the pressure gradient is as in part (b). Calculate $u(y)$ and the volume flux (per unit width) in the x-direction, Q. Explain why Q is unaffected by the value of U.
(d) Calculate the shear stress $\tau \mathbf{e}_{\mathbf{x}}$ on the fluid at $y=a$ for the flow in part (c). Find the value of U for which τ is zero and sketch the velocity profile given that this value of U is chosen.

Question 3

(a) What condition must a flow \mathbf{u} satisfy to be irrotational? State conditions under which an irrotational two-dimensional flow is a potential flow, i. e. $\mathbf{u}=\nabla \varphi$.
(b) For a steady two-dimensional inviscid potential flow, the potential $\varphi(x, y)$ and the streamfunction $\psi(x, y)$ satisfy the Cauchy-Riemann equations:

$$
\varphi_{, x}=\psi_{, y}, \quad \varphi_{, y}=-\psi_{, x}
$$

Use this result to show that the complex potential $\Phi=\varphi+i \psi$ is a function of $\zeta=x+i y$ only.
(c) Use cylindrical polar coordinates to calculate the inviscid flow $\mathbf{u}=\varphi_{, r} \mathbf{e}_{\mathbf{r}}+\frac{1}{r} \varphi_{, \theta} \mathbf{e}_{\theta}$ that corresponds to the complex potential $\Phi=(a-i b) \ln \zeta$, where a and b are real constants. Sketch the streamlines, adding arrows to show the direction of flow, for
(i) $a=0$ and $b>0$;
(ii) $a<0$ and $b=0$;
(iii) $a<0$ and $b>0$.
(d) Compare the flow in part (c)(iii) with a 'bathtub vortex,' which is formed when water drains from a bath and rotates around the plughole. What qualitative features do the two flows have in common? How do they differ?

Question 4

(a) Explain the distinction between the partial time derivative $\frac{\partial}{\partial t}$ and the material derivative $\frac{D}{D t}$.
(b) Let $V(t)$ denote the bounded region of space that is occupied by a given blob of fluid at time t. Recall that if the position of a fluid particle in $V(t)$ at time t is \mathbf{x}, its position in $V(0)$ at time 0 is denoted by \mathbf{X}. Use the result that the Jacobian determinant

$$
J\left(X_{1}, X_{2}, X_{3}, t\right)=\left[\begin{array}{ccc}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} & \frac{\partial x_{1}}{\partial X_{3}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{3}} \\
\frac{\partial x_{3}}{\partial X_{1}} & \frac{\partial x_{3}}{\partial X_{2}} & \frac{\partial x_{3}}{\partial X_{3}}
\end{array}\right]
$$

satisfies $\frac{\partial J}{\partial t}=J \nabla \cdot \mathbf{u}$ to prove Reynolds' Transport Theorem for an arbitrary differentiable function $G(\mathbf{x}, t)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} G(\mathbf{x}, t) \mathrm{d} \mathbf{x}=\int_{V(t)}\left\{\frac{D G(\mathbf{x}, t)}{D t}+G(\mathbf{x}, t) \nabla \cdot \mathbf{u}\right\} \mathrm{d} \mathbf{x}
$$

(c) Without assuming that the fluid is incompressible, use the fact that the mass of a given fluid blob is conserved to show that for an arbitrary differentiable function $F(\mathbf{x}, t)$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} \rho(\mathbf{x}, t) F(\mathbf{x}, t) \mathrm{d} \mathbf{x}=\int_{V(t)} \rho(\mathbf{x}, t) \frac{D F(\mathbf{x}, t)}{D t} \mathrm{~d} \mathbf{x}
$$

(d) The total kinetic energy of the fluid in the blob at time t is

$$
E(t)=\int_{V(t)} \frac{\rho}{2}(\mathbf{u} \cdot \mathbf{u}) \mathrm{d} \mathbf{x}
$$

Show that

$$
\frac{\mathrm{d} E(t)}{\mathrm{d} t}=\int_{V(t)} \rho\left(\mathbf{u} \cdot \frac{D \mathbf{u}}{D t}\right) \mathrm{d} \mathbf{x}
$$

(You may use Cartesian coordinates if you wish.) Assuming that the fluid in $V(t)$ is inviscid and incompressible, prove that $\frac{\mathrm{d} E(t)}{\mathrm{d} t}$ can be written as an integral over the boundary of $V(t)$. If the boundary is solid, how does the total energy change with time?

