UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS213 ORDINARY DIFFERENTIAL EQUATIONS

Time allowed - 2 hrs
Spring Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) Define what it means for a function $x(t)$ to be a solution to the differential equation

$$
\frac{d x}{d t}=f(x, t)
$$

(b) Determine the values of the real constants a, b and c for which $x(t)=a t^{2}+b t+c$ is a solution to the differential equation

$$
\left(\frac{d x}{d t}\right)^{2}=4 x+24 t^{2}
$$

(c) State an existence and uniqueness theorem for the initial value problem

$$
\frac{d x}{d t}=f(x, t), \quad x\left(t_{0}\right)=x_{0} .
$$

(d) Consider the ODE

$$
\frac{d x}{d t}=x^{3}-25 x
$$

(i) Sketch the phase portrait.
(ii) State which equilibria are attractors or repellors (or neither).
(iii) Determine which equilibria are sinks or sources (or neither).
(iv) Describe the asymptotic behaviour (as $t \rightarrow \pm \infty$ and/or $x(t) \rightarrow \pm \infty$) of the solution $x(t)$ satisfying $x(1)=6$.

Question 2

(a) Use the variation of parameters method to find the general solution to the ordinary differential equation

$$
\frac{d^{2} x}{d t^{2}}-7 \frac{d x}{d t}=8 e^{7 t}
$$

(b) Consider the linear system of first order differential equations $\mathbf{x}^{\prime}=A(t) \mathbf{x}$ where $A(t)$ is a 3×3 matrix.
(i) State conditions on the entries of $A(t)$ that guarantee that the initial value problem

$$
\mathbf{x}^{\prime}=A(t) \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0},
$$

has a unique solution on the interval $J=(-1,1)$ for all vectors $\mathbf{x}_{0} \in \mathbb{R}^{3}$.
(ii) Assume that your conditions in (i) are satisfied. By making suitable choices of $\mathbf{x}_{0} \in \mathbb{R}^{3}$, construct three linearly independent solutions $\mathbf{z}_{1}(t), \mathbf{z}_{2}(t), \mathbf{z}_{3}(t)$ to $\mathbf{x}^{\prime}=A(t) \mathbf{x}$.
Prove that $\mathbf{x}(t)=c_{1} \mathbf{z}_{1}(t)+c_{2} \mathbf{z}_{2}(t)+c_{3} \mathbf{z}_{3}(t)$ is the general solution.
(iii) Find the general solution to the linear system

$$
\mathbf{x}^{\prime}=A(t) \mathbf{x}, \quad A(t)=\left(\begin{array}{rrr}
-4 & 2 & 0 \\
14 & -1 & 0 \\
8 & 3 & 3
\end{array}\right)
$$

Question 3

Consider the nonlinear system $\mathbf{x}^{\prime}=f(\mathbf{x})$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}.
(a) Let $\mathbf{x}_{0} \in \mathbb{R}^{n}$. Prove that $\mathbf{x}(t) \equiv \mathbf{x}_{0}$ is a solution if and only if $f\left(\mathbf{x}_{0}\right)=\mathbf{0}$.
(b) Define what it means for an equilibrium to be asymptotically stable.
(c) Define Lyapunov function and strict Lyapunov function. Describe the consequence of the existence of such functions.
(d) Compute a Lyapunov function for the equilibrium $(-1,0,1)$ for the system

$$
\begin{aligned}
\dot{x} & =-x^{3}-3 x^{2}-3 x+5 z^{2}-10 z+4 \\
\dot{y} & =-13 z+7 z^{2}+6 \\
\dot{z} & =-4 y-2 z+2
\end{aligned}
$$

(e) Consider the system of equations

$$
\begin{aligned}
& \dot{x}=k x+2 y-(k+3) x^{3} \\
& \dot{y}=-4 x-y^{3}
\end{aligned}
$$

where $k \in \mathbb{R}$ is a constant.
Determine the stability properties of the equilibrium $(x, y)=(0,0)$ for each value of k.

Question 4

(a) Consider the equilibrium $\mathbf{x}=\mathbf{0}$ for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}$ where A is a constant $n \times n$ matrix.
Define hyperbolic, sink, source, saddle.
(b) Give an example that shows that an equilibrium for a linear system as in part (a) can be stable even if it is not a sink.
(c) Sketch the phase portrait for the linear system

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left(\begin{array}{rr}
-5 & 2 \\
-1 & -2
\end{array}\right)
$$

(d) Reduce the second order nonlinear equation

$$
\frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}+x^{2}-\left(\frac{d x}{d t}\right)^{2}=1
$$

to a system of first order equations, and compute the equilibria and their stability.
(e) Sketch the local phase portraits near each equilibrium in part (d).

