UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination
Module MS213 ORDINARY DIFFERENTIAL EQUATIONS

Time allowed - 2 hrs
Autumn Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) Let $x_{0}, t_{0} \in \mathbb{R}$ and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Consider the IVP

$$
\frac{d x}{d t}=f(x, t), \quad x\left(t_{0}\right)=x_{0} .
$$

(i) State an existence and uniqueness theorem for this IVP.
(ii) Give an example of a function f that does not satisfy the conditions of the existence and uniqueness theorem and has non-unique solutions. Give two solutions of the initial value problem to illustrate the non-uniqueness.
(b) Consider the ODE

$$
\frac{d x}{d t}=(x-1)^{2}(x+2)(x-k),
$$

where $k \geq 0$ is a non-negative real constant. The phase portrait will change if k varies.
(i) Find all possible types of phase portraits by varying $k \geq 0$ and give the range of k-values for which each type of phase portrait occurs. (Partial marks can be obtained for deriving the phase portrait for $k=3$.)
(ii) Take $k=3$. Which solutions have the property that $x(t) \rightarrow 1$ for $t \rightarrow \infty$?
(iii) Take $k=3$. Which solutions are bounded for all time?
(iv) Take $k=3$. Describe the asymptotic behaviour ($|t| \rightarrow \infty$ and/or $|x| \rightarrow \infty$) of the solution $x(t)$ which satisfies $x(5)=-3$.
(c) Consider the ODE

$$
\frac{d x}{d t}=f(x)
$$

with $f: \mathbb{R} \rightarrow \mathbb{R}$ a function which satisfies the conditions of the Existence and Uniqueness Theorem. Let x_{0} be such that $f\left(x_{0}\right)=0$. Let $x(t)$ be a solution for $t \in I$ with I an open interval in \mathbb{R}. Show that if for some $t_{0} \in I$, it holds that $x\left(t_{0}\right)>x_{0}$, then $x(t)>x_{0}$ for all $t \in I$.

Question 2

(a) Let $x_{1}(t), \ldots, x_{k}(t)$ be real functions (i.e. $\left.x_{i}: \mathbb{R} \rightarrow \mathbb{R}\right)$. Define what it means to say that the functions $x_{1}(t), \ldots, x_{k}(t)$ are linearly independent.
(b) Let $x_{1}, x_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Give the definition of the Wronskian of x_{1} and x_{2}.
(c) Consider the ODE

$$
a_{2}(t) \frac{d^{2} x}{d t^{2}}(t)+a_{1}(t) \frac{d x}{d t}(t)+a_{0}(t) x(t)=0
$$

with a_{2}, a_{1}, a_{0} continuous functions on $\mathbb{R}, a_{2}(t) \neq 0$. Let $x_{1}(t)$ and $x_{2}(t)$ be solutions of the ODE and let $t_{0} \in \mathbb{R}$. Show that x_{1} and x_{2} are linearly independent if and only if the Wronskian $W\left(t_{0}\right) \neq 0$.
You may use the Existence and Uniqueness Theorem without giving a proof.
(d) Consider the ODE

$$
t^{2} \frac{d^{2} x}{d t^{2}}+4 t(t-1) \frac{d x}{d t}+\left(6-8 t+3 t^{2}\right) x=0
$$

(i) Show that $x_{1}(t)=t^{2} e^{-t}$ is a solution of this ODE for $t>0$.
(ii) Using the method of variation of parameters, find a solution of this ODE that is linearly independent of $x_{1}(t)$.
(iii) Give the general solution of this ODE.

Question 3

(a) Consider the nonlinear system $\dot{\mathbf{x}}=f(\mathbf{x})$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuously differentiable function. If \mathbf{x}_{0} is an equilibrium of the nonlinear system, what does it mean to say that
(i) \mathbf{x}_{0} is linearly stable;
(ii) \mathbf{x}_{0} is nonlinearly stable?
(b) Consider the system

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-x-z^{3} \\
\dot{z} & =-x^{2} \sin z+y
\end{aligned}
$$

(i) Show that this system has an equilibrium at the origin.
(ii) Find values a, b, such that $V(x, y, z)=a x^{2}+b y^{2}+z^{4}$ is a Lyapunov function for the equilibrium at the origin.
(iii) From this Lyapunov function, can you conclude that the origin is stable or asymptotically stable? Explain your answer.
(c) Let $A \in \mathbb{R}^{2 \times 2}$ be a real matrix with eigenvalues λ_{1} and λ_{2}. The eigenvector for the eigenvalue λ_{1} is $\mathbf{v}_{1}=\binom{0}{1}$ and the eigenvector for λ_{2} is $\mathbf{v}_{2}=\binom{-1}{1}$.
(i) If $\lambda_{1}=-1$ and $\lambda_{2}=2$, sketch the phase portrait of the ODE $\dot{\mathbf{x}}=A \mathbf{x}$.
(ii) Let $B \in \mathbb{R}^{2 \times 2}$ be a constant coefficient real matrix with same eigenvectors as A. The eigenvalues of B are denoted by σ_{1} and σ_{2}. Define the matrix C to be $C=A B$, hence C has eigenvalues $\lambda_{1} \sigma_{1}$ and $\lambda_{2} \sigma_{2}$. Suppose that both the ODEs $\dot{\mathbf{x}}=A \mathbf{x}$ and $\dot{\mathbf{y}}=B \mathbf{y}$ have a saddle point at the origin.
Consider the ODE $\dot{\mathbf{z}}=C \mathbf{z}$. What different types of fixed point can the origin of this ODE be? Justify your answer. Sketch the different types of phase portraits this system has.

Question 4

(a) Let $A \in \mathbb{R}^{2 \times 2}$ be a constant coefficient real matrix with a double eigenvalue λ and only one eigenvector \mathbf{v}_{1}.
(i) Give the definition of a generalised eigenvector of A.
(ii) Show that the general solution of the ODE $\dot{\mathbf{x}}=A \mathbf{x}$ is of the form

$$
\mathbf{x}(t)=\left(c_{1} \mathbf{v}_{1}+c_{2}\left(\mathbf{v}_{2}+t(A-\lambda I) \mathbf{v}_{2}\right)\right) e^{\lambda t}
$$

and explain what criteria \mathbf{v}_{2} should satisfy.
(b) Consider the ODE $\dot{\mathbf{x}}=A \mathbf{x}$, with

$$
A=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-2 & 1 & -2 \\
7 & 2 & -3
\end{array}\right)
$$

Find the general solution of this ODE.
(c) Consider the system

$$
\begin{aligned}
\dot{x} & =y-x-1 \\
\dot{y} & =x-x^{2}
\end{aligned}
$$

(i) Calculate the equilibria of this system and determine their stability.
(ii) Sketch local phase portraits for each equilibrium.

