UNIVERSITY OF SURREY ${ }^{\circledR}$

B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS211 NUMERICAL AND COMPUTATIONAL METHODS

Time allowed $-1 \frac{1}{2} \mathrm{hrs}$
Spring Semester 2006

Attempt THREE questions.
If any candidate attempts more than THREE questions, only the best THREE solutions will be taken into account.

Question 1

(a) (i) Consider the linear system $A \mathbf{x}=\mathbf{b}$ where A is nonsingular. Suppose that $\tilde{\mathbf{x}}$ is an approximate solution to this system which satisfies $A \tilde{\mathbf{x}}=\mathbf{b}$. Show that

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\mathbf{b}-\tilde{\mathbf{b}}\|}{\|\mathbf{b}\|}
$$

(ii) Show that the condition number $K(A)=\|A\|\left\|A^{-1}\right\|$ satisfies $K(A) \geq 1$ for all matrices A assuming that a natural matrix norm is used.
(iii) What is the significance of the condition number?
(b) Consider the linear system

$$
\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right]
$$

The Gauss-Seidel iteration for solving this system can be expressed in the form

$$
\mathbf{x}^{(k+1)}=M \mathbf{x}^{(k)}+\mathbf{c} .
$$

Find M and \mathbf{c}.
State a condition for this iteration to converge for any \mathbf{x}_{0} and determine whether or not the Gauss-Seidel iteration converges for the linear system above.

Question 2

(a) Consider the following iteration for some constant $\beta>0$:

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\beta}{x_{n}}\right)
$$

(i) Show that $\sqrt{\beta}$ is a fixed point of the iteration.
(ii) Show that the iteration converges quadratically to this fixed point.
(iii) Taking $\beta=2$ and $x_{0}=1.5$, compute the first 2 iterates. Use these values to show that the error is decreasing quadratically and calculate the asymptotic error constant.
(b) State Newton's method for solving the system of nonlinear equations $\mathbf{f}(\mathbf{x})=\mathbf{0}$.

Rewrite the Newton iteration as a two-stage iteration and explain why this form of the iteration should be used in practice.

Question 3

(a) Let $p_{n}(x)$ be the polynomial of degree n which interpolates the function $f(x)$ at the points $x_{i}, i=0,1, \ldots, n$ in the interval $[a, b]$.
For each $x \in[a, b]$

$$
\begin{equation*}
f(x)=p_{n}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right) \tag{1}
\end{equation*}
$$

for some $\xi \in(a, b)$. Prove this result for $n=1$.
(b) Use equation (1) to show that on the interval $\left[x_{0}, x_{1}\right]$,

$$
\left|f(x)-p_{1}(x)\right| \leq \frac{1}{8}\left(x_{1}-x_{0}\right)^{2} M
$$

where $M=\max _{\xi \in\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(\xi)\right|$.
(c) Use the divided difference form of the interpolating polynomial to find the quadratic polynomial which interpolates the following data:

$$
\begin{aligned}
& x_{0}=1, \quad x_{1}=3, \quad x_{2}=4, \\
& f_{0}=3, \quad f_{1}=7, \quad f_{2}=12 .
\end{aligned}
$$

Hence find an approximation to $f(2)$.

Question 4

(a) State the three different finite difference approximations to the derivative $f^{\prime}\left(x_{0}\right)$, together with the order of their truncation errors.

Derive the forward difference approximation and its leading error term
(b) Gaussian quadrature approximates the integral

$$
\int_{a}^{b} f(x) d x
$$

by the sum

$$
\sum_{k=0}^{n} c_{k} f\left(x_{k}\right)
$$

The unknown coefficients and points are found by requiring that

$$
\int_{a}^{b} x^{j} d x=\sum_{k=0}^{n} c_{k} x_{k}^{j}, \quad j=0,1, \ldots, 2 n+1
$$

(i) Use this to derive four equations to be solved for the two point quadrature rule

$$
\int_{-1}^{1} f(x) d x \approx a_{0} f\left(x_{0}\right)+a_{1} f\left(x_{1}\right)
$$

which is exact when f is a polynomial of degree 3 or less. Show that

$$
a_{0}=a_{1}=1, \quad x_{0}=-\frac{1}{\sqrt{3}}, \quad \text { and } x_{1}=\frac{1}{\sqrt{3}} .
$$

is the solution of these equations.
(ii) Find the 2 point Gaussian quadrature approximation to the integral

$$
\int_{0}^{2} \sin \left(\frac{3 \pi}{2}(x-1)^{2}\right) d x
$$

Question 5

(a) A multistep method for solving the differential equation

$$
\dot{y}=f(t, y), \quad y(0)=\alpha
$$

can be derived by integrating the equation over the interval $\left[t_{i-1}, t_{i+1}\right]$ and then approximating $f(t, y(t))$ by $P_{1}(t)$, where $P_{1}(t)$ is a linear polynomial which interpolates $f(t, y(t))$ at the points t_{i} and t_{i-1}. We define $t_{i}=i h$ where $i=0,1,2, \ldots$ and h is the step size.

Show that the method derived in this way is given by

$$
y_{i+1}=y_{i-1}+2 h f\left(t_{i}, y_{i}\right)
$$

You may use the following results without verifying them:

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i+1}}\left(t-t_{i}\right) d t=0, \quad \int_{t_{i-1}}^{t_{i+1}}\left(t-t_{i-1}\right) d t=2 h^{2} \tag{8}
\end{equation*}
$$

Hint: Use $t_{i}-t_{i-1}=h$.
(b) Describe the linear shooting method for solving the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}-x y^{\prime}-x^{2} y=2 x^{3}, \quad 0 \leq x \leq 1, \\
y(0)=1, \quad y(1)=-1,
\end{gathered}
$$

which involves the solution of two initial value problems for y_{1} and y_{2}.
Rewrite the two initial value problems which have to be solved as a first order system of equations.
State Euler's method applied to this first order system.

