B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE2 Examination

Module MS211 NUMERICAL AND COMPUTATIONAL METHODS

Time allowed – $1\frac{1}{2}$ hrs

Spring Semester 2006

Attempt THREE questions. If any candidate attempts more than THREE questions, only the best THREE solutions will be taken into account.

SEE NEXT PAGE

Question 1

(a) (i) Consider the linear system $A\mathbf{x} = \mathbf{b}$ where A is nonsingular. Suppose that $\tilde{\mathbf{x}}$ is an approximate solution to this system which satisfies $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$. Show that

$$\frac{||\mathbf{x} - \tilde{\mathbf{x}}||}{||\mathbf{x}||} \le ||A|| ||A^{-1}|| \frac{||\mathbf{b} - \tilde{\mathbf{b}}||}{||\mathbf{b}||}.$$

- (ii) Show that the condition number $K(A) = ||A|| ||A^{-1}||$ satisfies $K(A) \ge 1$ for all matrices A assuming that a natural matrix norm is used.
- (iii) What is the significance of the condition number?
- (b) Consider the linear system

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

The Gauss-Seidel iteration for solving this system can be expressed in the form

$$\mathbf{x}^{(k+1)} = M\mathbf{x}^{(k)} + \mathbf{c}.$$

Find M and \mathbf{c} .

State a condition for this iteration to converge for any \mathbf{x}_0 and determine whether or not the Gauss-Seidel iteration converges for the linear system above. [10]

[10]

MS211/5/SS06

Question 2

(a) Consider the following iteration for some constant $\beta > 0$:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\beta}{x_n} \right)$$

- (i) Show that $\sqrt{\beta}$ is a fixed point of the iteration.
- (ii) Show that the iteration converges quadratically to this fixed point. [6]
- (iii) Taking $\beta = 2$ and $x_0 = 1.5$, compute the first 2 iterates. Use these values to show that the error is decreasing quadratically and calculate the asymptotic error constant. [6]
- (b) State Newton's method for solving the system of nonlinear equations f(x) = 0.
 Rewrite the Newton iteration as a two-stage iteration and explain why this form of the iteration should be used in practice.

Question 3

(a) Let $p_n(x)$ be the polynomial of degree n which interpolates the function f(x) at the points x_i , i = 0, 1, ..., n in the interval [a, b].

For each $x \in [a, b]$

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
(1)

for some $\xi \in (a, b)$. Prove this result for n = 1.

(b) Use equation (1) to show that on the interval $[x_0, x_1]$,

$$|f(x) - p_1(x)| \le \frac{1}{8}(x_1 - x_0)^2 M,$$

where $M = \max_{\xi \in [x_0, x_1]} |f''(\xi)|.$

(c) Use the divided difference form of the interpolating polynomial to find the quadratic polynomial which interpolates the following data:

$$x_0 = 1$$
, $x_1 = 3$, $x_2 = 4$,
 $f_0 = 3$, $f_1 = 7$, $f_2 = 12$.

Hence find an approximation to f(2).

[6]

[4]

[10]

[2]

Question 4

(a) State the three different finite difference approximations to the derivative $f'(x_0)$, together with the order of their truncation errors.

Derive the forward difference approximation and its leading error term [9]

(b) Gaussian quadrature approximates the integral

$$\int_{a}^{b} f(x) dx$$

by the sum

$$\sum_{k=0}^{n} c_k f(x_k).$$

The unknown coefficients and points are found by requiring that

$$\int_{a}^{b} x^{j} dx = \sum_{k=0}^{n} c_{k} x_{k}^{j}, \quad j = 0, 1, \dots, 2n+1.$$

(i) Use this to derive four equations to be solved for the two point quadrature rule

$$\int_{-1}^{1} f(x)dx \approx a_0 f(x_0) + a_1 f(x_1)$$

which is exact when f is a polynomial of degree 3 or less. Show that

$$a_0 = a_1 = 1$$
, $x_0 = -\frac{1}{\sqrt{3}}$, and $x_1 = \frac{1}{\sqrt{3}}$

is the solution of these equations.

(ii) Find the 2 point Gaussian quadrature approximation to the integral

$$\int_{0}^{2} \sin\left(\frac{3\pi}{2}(x-1)^{2}\right) dx.$$
[4]

•

[7]

MS211/5/SS06

Question 5

(a) A multistep method for solving the differential equation

$$\dot{y} = f(t, y), \qquad y(0) = \alpha$$

can be derived by integrating the equation over the interval $[t_{i-1}, t_{i+1}]$ and then approximating f(t, y(t)) by $P_1(t)$, where $P_1(t)$ is a linear polynomial which interpolates f(t, y(t)) at the points t_i and t_{i-1} . We define $t_i = ih$ where i = 0, 1, 2, ... and h is the step size.

Show that the method derived in this way is given by

$$y_{i+1} = y_{i-1} + 2hf(t_i, y_i).$$

You may use the following results without verifying them:

$$\int_{t_{i-1}}^{t_{i+1}} (t-t_i) \, dt = 0, \qquad \int_{t_{i-1}}^{t_{i+1}} (t-t_{i-1}) \, dt = 2h^2.$$

Hint: Use $t_i - t_{i-1} = h$.

(b) Describe the linear shooting method for solving the boundary value problem

$$y'' - xy' - x^2y = 2x^3, \quad 0 \le x \le 1,$$

 $y(0) = 1, \quad y(1) = -1,$

which involves the solution of two initial value problems for y_1 and y_2 .

Rewrite the two initial value problems which have to be solved as a first order system of equations.

State Euler's method applied to this first order system.

[12]

INTERNAL EXAMINER: D. LLOYD EXTERNAL EXAMINER: P. GLENDINNING

[8]