MS132/7/SS06 (handouts 1)

UNIVERSITY OF SURREY[©]

B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination

Module MS132 PROBABILITY AND STATISTICS

Time allowed -2 hours

Spring Semester 2006

Attempt FOUR questions. If any candidate attempts more than FOUR questions only the best FOUR solutions will be taken into account. Cambridge Statistical Tables and a formula sheet will be provided.

SEE NEXT PAGE

- (a) For married couples living in a certain region the probability that the husband will vote on a referendum is 0.24, the probability that the wife will vote is 0.31 and the probability that they will both vote is 0.16. What is the probability that;
 - (i) At least one member of a married couple will vote?
 - (ii) a husband will vote, given that his wife will vote?
 - (iii) a wife will not vote, given that her husband will vote? [9]

State with justification whether or not the probability that a husband will vote is independent of the probability that his wife will vote. [2]

(b) (i) A committee of size 8 is selected at random from 12 professional people and 28 non-professional people.

Write down an expression for the probability that exactly 3 members of the committee are professional people and evaluate this probability.

[Give your answer correct to four decimal places]

- (ii) A committee of size 8 is selected at random from 1200 professional people and 2800 non-professional people.
 - i. Write down the expression for the probability that exactly 3 members of the committee are professional people and evaluate this probability.
 [Give your answer correct to four decimal places]
 - ii. Write down a binomial random variable that can be used to approximate the probability that exactly 3 members of the committee are professional people and evaluate this probability.

[Give your answer correct to four decimal places]

[6]

[4]

[4]

 $\mathbf{2}$

- (a) A random variable Y has an exponential distribution with parameter λ . Show that $E[Y] = \frac{1}{\lambda}$ and $Var[Y] = \frac{1}{\lambda^2}$.
- (b) A random variable X has an exponential distribution with parameter 4.
 - (i) Using part (a) write down the mean of X.[1](ii) Show that the median of X is $\frac{1}{4}$ ln2.[4]
 - (iii) Calculate the probability that an observation selected at random from X will lie between the median and the mean. [3]
 - (iv) Calculate the probability that if five observations are selected at random then exactly two will lie between the median and the mean. [4]
- (c) Three random variables U, V and W are independent exponential random variables with parameters λ_U , λ_V and λ_W .

Find the following in terms of λ_U , λ_V and λ_W :

 (i) E[U + V + W]; [1]

 (ii) E[UV]; [2]

 (iii) Var[U + V + W]; [2]

 (iv) Var[2V - 3W]. [3]

[5]

(a) The probability mass function of a Poisson distribution with mean μ is given by;

$$P(X = x) = \frac{\mu^x e^{-\mu}}{x!}, \qquad x = 0, 1, 2, \dots.$$

Let x_1, x_2, \ldots, x_n be *n* independent observations from this distribution.

Derive the Maximum Likelihood estimator and the Method of Moments estimator for μ .

(b) The number of faults reported during the warranty period on each of 90 cars sold by a particular vehicle dealer were recorded.

The data are shown in the following table.

Number of faults	0	1	2	3	4	5	6+
Frequency	23	29	20	10	4	4	0

- (i) Test whether it is reasonable to assume that the data follow a Poisson distribution with mean 1. [7]
- (ii) Assuming that the data in the table do follow a Poisson distribution, obtain the Maximum Likelihood estimator for the mean μ . [2]
- (iii) Test whether the data follow a Poisson distribution with unspecified mean.

[9]

[7]

- (a) Outline the situations in which the following tests would be used. In each case state clearly the assumptions made in using the test.
 - (i) A two-sample *t*-test.
 - (ii) A paired *t*-test.
- (b) (i) A variety of coffee is packaged using two machines X and Y. A random samples of 9 packets of coffee was taken from X and a random samples of 16 packets of coffee was taken from Y.

The masses in grams of the packets from machine X were recorded as x_i , and those from machine Y were recorded as y_j , with i = 1, 2, ..., 9, and j = 1, 2, ..., 16. Summary statistics are given below:

$$\bar{x} = 30.1, \qquad \sum_{i=1}^{9} (x_i - \bar{x})^2 = 0.801,$$

 $\bar{y} = 29.6, \qquad \sum_{j=1}^{16} (y_j - \bar{y})^2 = 3.021.$

Test whether there is a significant difference between the masses of packets of coffee from the two machines.

(ii) Eight athletes ran a 400 metres race at sea level and at a later meeting ran another 400 metres race at high altitude.

Their times in seconds for the two races were as follows:

Runner	А	В	С	D	Е	F	G	Η
Time at sea level(s)	48.3	47.6	49.2	50.3	48.8	51.1	49.0	48.1
Time at high altitude(s)	50.4	47.3	50.8	52.3	47.7	54.5	48.9	49.9

Test the hypothesis that the athletes' performance is not affected by the altitude.

[10]

[9]

[6]

A biased coin has probability $\frac{1}{4}$ of landing heads up when tossed.

The coin is tossed three times. The result of the first toss is scored as $X_1 = 1$ for heads and $X_1 = 0$ for tails; X_2 and X_3 are scored likewise for the second and third tosses.

6

Let $Y_1 = X_1 + X_2 + X_3$ and $Y_2 = X_1 - X_2$.

Show that $P(Y_1 = 2, Y_2 = 0) = \frac{3}{64}$. Calculate the remaining probabilities in the bivariate distribution of the pair (Y_1, Y_2) and display the joint probabilities in an appropriate table. [6]

(a) Find the marginal probability distributions of Y_1 and Y_2 .	[4]
(b) Calculate the means and variances of Y_1 and Y_2 .	[5]
(c) Calculate the covariance of Y_1 and Y_2 . Comment on your result.	[4]
(d) Find the conditional distribution of Y_1 given $Y_2 = 1$.	[4]
(e) Find the conditional mean of Y_1 given $Y_2 = 1$.	[2]

(a) For a random variable X, the moment generating function $M_X(z)$ is defined as $E[e^{zX}]$. Show that

$$\frac{dM_X(0)}{dz} = E[X]$$
 and $\frac{d^2M_X(0)}{dz^2} = E[X^2].$

Hence find an expression for Var[X].

(b) A random variable X has probability density function

$$f(x) = \begin{cases} kxe^{-3x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

- (i) Find the value of k.
- (ii) Show that the moment generating function of X is given by:

$$M_X(z) = \frac{9}{(3-z)^2}.$$
[6]

(iii) Using the moment generating function, calculate E[X], Var[X] and show that $E[X(X+1)(X+2)] = \frac{38}{9}$. [10]

[4]

[5]