UNIVERSITY OF SURREY[©]

B. Sc. Undergraduate Programmes in Mathematical Studies M. Math. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination

Module MS113 LINEAR ALGEBRA

Time allowed -2 hrs

Spring Semester 2007

Answer any **four** of the six questions.

If you attempt more than four questions, only your BEST FOUR answers will be taken into account.

Each question carries 25 marks.

SEE NEXT PAGE

Question 1

- (a) Let U be a subspace of \mathbb{R}^n . Give definitions of
 - (i) a **basis** for U, [3]
 - (ii) the **dimension** of U,
 - (iii) a **complement** of U in \mathbb{R}^n .
- (b) S is the subset $\{(1, -2, 1, 4), (3, -1, 2, 3), (2, 6, 0, -10)\}$ of \mathbb{R}^4 .
 - (i) Show that S is a linearly dependent set and find a basis for the subspace of \mathbb{R}^4 spanned by S. [7]
 - (ii) Hence find a basis for a complement of span(S) in \mathbb{R}^4 .
- (c) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ be a linearly independent set of vectors in \mathbb{R}^n .
 - (i) Briefly explain why $m \le n$. You may assume any result that was proved in the lectures. [2]
 - (ii) Show that if the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{u}\}$ is linearly dependent then \mathbf{u} is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$. [6]

Question 2

Let U and V be subspaces of \mathbb{R}^n .

(a) Prove that the intersection $U \cap V$ is a subspace of \mathbb{R}^n .	[8]
(b) Now let $U = \operatorname{span}\{(1 \ 0 \ 1) \ (0 \ 1 \ 0)\}$ and $V = \operatorname{span}\{(1 \ 1 \ 0)\}$	

(b) Now let $U = \text{span}\{(1, 0, 1), (0, 1, 0)\}$ and $V = \text{span}\{(1, 0, 1), (0, 1, 0)\}$	$an\{(1, 1, 0)\}.$
Show that $U \cap V = \{(0,0,0)\}$ and deduce that \mathbb{R}	$\mathfrak{L}^3 = U \oplus V. $ [7]

Let $\alpha = (\mathbf{i}, \mathbf{j}, \mathbf{k})$ be the standard ordered basis for \mathbb{R}^3 and let β be the ordered basis ((1, 0, 1), (0, 1, 0), (1, 1, 0)).

- (c) Write down the change matrix P from β to α coordinates and find the change matrix from α to β coordinates.
- (d) Let A and B be 3×3 matrices such that PB = AP, where P is the change matrix found in part (c). Describe the significance of this relationship in terms of a linear map of \mathbb{R}^3 . [3]

[2]

[3]

[2]

[7]

Question 3

- (a) For each of the following, state whether or not it is one of the axioms for a real vector space V. [4]
 - (i) (u + v) + w = u + (v + w) for all $u, v, w \in V$,
 - (ii) there exists an element $1 \in V$ such that 1v = v for all $v \in V$,
 - (iii) uv = vu for all $u, v \in V$,
 - (iv) (a+b)v = av + bv for all $a, b \in \mathbb{R}$ and $v \in V$.
- (b) Let X be a fixed 2×2 matrix. Let Z_X be the set of 2×2 real matrices A such that XA is the 2×2 zero matrix.
 - (i) Prove that Z_X is a subspace of $M_{2,2}(\mathbb{R})$. [6]
 - (ii) Find a basis for Z_X when $X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. State the dimension of Z_X in this case. [8]
- (c) V and W are vector spaces with ordered bases $\alpha = (v_1, v_2, v_3)$ and $\beta = (w_1, w_2, w_3, w_4)$ respectively.
 - $T: V \to W$ is the linear map defined by its effect on the basis elements as follows:

 $Tv_1 = w_1 + w_2 + w_3 + w_4, \ Tv_2 = w_1 - w_2 - w_3, \ Tv_3 = w_1 + 3w_2 + 3w_3 + 2w_4.$ Find a basis for the kernel of T. [7]

Question 4

- (a) If λ is an eigenvalue of a linear map $T: V \to V$, show that $\lambda + 1$ is an eigenvalue of T + I where I denotes the identity linear map on V. [5]
- (b) T is the linear map of \mathbb{R}^3 whose standard matrix is $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
 - (i) Show that T has two distinct eigenvalues.[7](ii) Find bases for the two eigenspaces of T.[10](iii) Write down an ordered basis of \mathbb{R}^3 consisting of eigenvectors of T. Give the matrix
 - which represents T relative to this ordered basis. [3]

Question 5

- (a) Let q be the real quadratic form $3x^2 4xy + 6y^2$.
 - (i) Find an orthogonal change of coordinates which transforms q to the form aX² + bY². State the values of a and b, and give each of X and Y in terms of x and y.
 - (ii) Hence find the principal axes of the conic $3x^2 4xy + 6y^2 = 5$. Sketch the curve and state what type of conic it is. [5]
- (b) Let A be a positive definite real matrix. Prove that the matrix $A^t A$ is symmetric and positive definite. [6]
- (c) Let V be a two-dimensional real vector space with basis $\{u, v\}$. Let V^* be the vector space consisting of all linear maps from V to \mathbb{R} .
 - (i) Give the word which is usually used to describe the space V^* . [2]
 - (ii) Write down an ordered basis α for V^* , defining each element clearly. [3]

Question 6

- (a) Let U be the subspace of $\mathcal{F}(\mathbb{R})$ spanned by $\{e^x, e^{-x}\}$. Let $B: U \times U \to \mathbb{R}$ be given by $B(f(x), g(x)) = \int_0^1 f(x)g(x) \, dx$ for any $f(x), g(x) \in U$.
 - (i) Show that B is an inner product on U. [9]
 - (ii) Find the matrix of B relative to the ordered basis (e^x, e^{-x}) . [7]
- (b) (i) State what is meant by a **unitary matrix**.
 - (ii) Suppose $\begin{pmatrix} re^{i\theta} & re^{i\theta} \\ rie^{-i\theta} & -rie^{-i\theta} \end{pmatrix}$ is a unitary matrix for all real values of θ . Find the possible values of the real number r. [You may assume that $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$ for all $z_1, z_2 \in \mathbb{C}$, $\overline{i} = -i$ and $\overline{e^{i\theta}} = e^{-i\theta}$.] [7]

[2]