UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination

Module MS113 LINEAR ALGEBRA

Answer any four of the six questions.
If you attempt more than four questions, only your BEST FOUR answers will be taken into account.

Each question carries 25 marks.

Question 1

(a) Let U be a subspace of \mathbb{R}^{n}. Give definitions of
(i) a basis for U,
(ii) the dimension of U,
(iii) a complement of U in \mathbb{R}^{n}.
(b) S is the subset $\{(1,-2,1,4),(3,-1,2,3),(2,6,0,-10)\}$ of \mathbb{R}^{4}.
(i) Show that S is a linearly dependent set and find a basis for the subspace of \mathbb{R}^{4} spanned by S.
(ii) Hence find a basis for a complement of $\operatorname{span}(S)$ in \mathbb{R}^{4}.
(c) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ be a linearly independent set of vectors in \mathbb{R}^{n}.
(i) Briefly explain why $m \leq n$. You may assume any result that was proved in the lectures.
(ii) Show that if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}, \mathbf{u}\right\}$ is linearly dependent then \mathbf{u} is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$.

Question 2

Let U and V be subspaces of \mathbb{R}^{n}.
(a) Prove that the intersection $U \cap V$ is a subspace of \mathbb{R}^{n}.
(b) Now let $U=\operatorname{span}\{(1,0,1),(0,1,0)\}$ and $V=\operatorname{span}\{(1,1,0)\}$.

Show that $U \cap V=\{(0,0,0)\}$ and deduce that $\mathbb{R}^{3}=U \oplus V$.
Let $\alpha=(\mathbf{i}, \mathbf{j}, \mathbf{k})$ be the standard ordered basis for \mathbb{R}^{3} and let β be the ordered basis $((1,0,1),(0,1,0),(1,1,0))$.
(c) Write down the change matrix P from β to α coordinates and find the change matrix from α to β coordinates.
(d) Let A and B be 3×3 matrices such that $\mathrm{PB}=\mathrm{AP}$, where P is the change matrix found in part (c). Describe the significance of this relationship in terms of a linear map of \mathbb{R}^{3}.

Question 3

(a) For each of the following, state whether or not it is one of the axioms for a real vector space V.
(i) $(u+v)+w=u+(v+w)$ for all $u, v, w \in V$,
(ii) there exists an element $1 \in V$ such that $1 v=v$ for all $v \in V$,
(iii) $u v=v u$ for all $u, v \in V$,
(iv) $(a+b) v=a v+b v$ for all $a, b \in \mathbb{R}$ and $v \in V$.
(b) Let X be a fixed 2×2 matrix. Let Z_{X} be the set of 2×2 real matrices A such that XA is the 2×2 zero matrix.
(i) Prove that Z_{X} is a subspace of $M_{2,2}(\mathbb{R})$.
(ii) Find a basis for Z_{X} when $\mathrm{X}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. State the dimension of Z_{X} in this case.
(c) V and W are vector spaces with ordered bases $\alpha=\left(v_{1}, v_{2}, v_{3}\right)$ and $\beta=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ respectively.
$T: V \rightarrow W$ is the linear map defined by its effect on the basis elements as follows:

$$
T v_{1}=w_{1}+w_{2}+w_{3}+w_{4}, T v_{2}=w_{1}-w_{2}-w_{3}, T v_{3}=w_{1}+3 w_{2}+3 w_{3}+2 w_{4}
$$

Find a basis for the kernel of T.

Question 4

(a) If λ is an eigenvalue of a linear map $T: V \rightarrow V$, show that $\lambda+1$ is an eigenvalue of $T+I$ where I denotes the identity linear map on V.
(b) T is the linear map of \mathbb{R}^{3} whose standard matrix is $\mathrm{A}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.
(i) Show that T has two distinct eigenvalues.
(ii) Find bases for the two eigenspaces of T.
(iii) Write down an ordered basis of \mathbb{R}^{3} consisting of eigenvectors of T. Give the matrix which represents T relative to this ordered basis.

Question 5

(a) Let q be the real quadratic form $3 x^{2}-4 x y+6 y^{2}$.
(i) Find an orthogonal change of coordinates which transforms q to the form $a X^{2}+b Y^{2}$. State the values of a and b, and give each of X and Y in terms of x and y.
(ii) Hence find the principal axes of the conic $3 x^{2}-4 x y+6 y^{2}=5$. Sketch the curve and state what type of conic it is.
(b) Let A be a positive definite real matrix. Prove that the matrix $\mathrm{A}^{t} \mathrm{~A}$ is symmetric and positive definite.
(c) Let V be a two-dimensional real vector space with basis $\{u, v\}$.

Let V^{*} be the vector space consisting of all linear maps from V to \mathbb{R}.
(i) Give the word which is usually used to describe the space V^{*}.
(ii) Write down an ordered basis α for V^{*}, defining each element clearly.

Question 6

(a) Let U be the subspace of $\mathcal{F}(\mathbb{R})$ spanned by $\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}$.

Let $B: U \times U \rightarrow \mathbb{R}$ be given by $B(\mathrm{f}(x), \mathrm{g}(x))=\int_{0}^{1} \mathrm{f}(x) \mathrm{g}(x) \mathrm{d} x$ for any $\mathrm{f}(x), \mathrm{g}(x) \in U$.
(i) Show that B is an inner product on U.
(ii) Find the matrix of B relative to the ordered basis $\left(\mathrm{e}^{x}, \mathrm{e}^{-x}\right)$.
(b) (i) State what is meant by a unitary matrix.
(ii) Suppose $\left(\begin{array}{cc}r \mathrm{e}^{\mathrm{i} \theta} & r \mathrm{e}^{\mathrm{i} \theta} \\ r \mathrm{ie}^{-\mathrm{i} \theta} & -r \mathrm{e}^{-\mathrm{i} \theta}\end{array}\right)$ is a unitary matrix for all real values of θ.

Find the possible values of the real number r.
[You may assume that $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$ for all $z_{1}, z_{2} \in \mathbb{C}, \overline{\mathrm{i}}=-\mathrm{i}$ and $\overline{\mathrm{e}^{\mathrm{i} \theta}}=\mathrm{e}^{-\mathrm{i} \theta}$.]

