UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination
MS113 LINEAR ALGEBRA

Answer any four of the six questions.
If you attempt more than four questions, only your BEST FOUR answers will be taken into account.

Each question carries 25 marks.

Question 1

(a) Let v_{1}, \ldots, v_{m} be elements of a real vector space V. State what is meant by a linear combination of v_{1}, \ldots, v_{m}.
Show that $(1,2,4)$ is not a linear combination of $(1,1,1)$ and $(1,-1,3)$.
(b) Let A be an $m \times n$ real matrix. Define the null-space of A and prove that it is a subspace of \mathbb{R}^{n}.
(c) Find, in parametric form, the solution set of the equations

$$
\begin{equation*}
x_{1}+2 x_{2}+4 x_{3}+3 x_{4}=3, \quad 2 x_{1}-x_{2}-2 x_{3}+x_{4}=1 . \tag{7}
\end{equation*}
$$

(d) Using your answer to part (c), write down the null-space of the matrix $\left(\begin{array}{rrrr}1 & 2 & 4 & 3 \\ 2 & -1 & -2 & 1\end{array}\right)$, giving your answer as the span of a set of vectors.

Question 2

(a) Write down any four of the axioms for a real vector space V.
(b) State what is meant by the dimension of a vector space.

Give an example of a vector space which is not finite-dimensional.
(c) α is the ordered basis $\left(1, x, x^{2}, x^{3}\right)$ for $P_{3}(\mathbb{R})$.

Write down the α-coordinates of
(i) $1+x-x^{3}$,
(ii) $2+2 x+x^{2}$,
(iii) $1+x+2 x^{2}+3 x^{3}$.

Find the dimension of the subspace of $P_{3}(\mathbb{R})$ spanned by $1+x-x^{3}$, $2+2 x+x^{2}$ and $1+x+2 x^{2}+3 x^{3}$.
(d) Let V be an n-dimensional vector space and let $\left\{u_{1}, \ldots, u_{n}\right\}$ be any linearly independent subset of V.
(i) Prove that every element of V is a linear combination of u_{1}, \ldots, u_{n}. (You may assume that any set which contains more than n elements of V is linearly dependent.)
(ii) Deduce that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for V.

Question 3

(a) Give examples of the following:
(i) Two singular 2×2 matrices whose sum is non-singular.
(ii) A 3×3 matrix with rank 1 , whose entries are all non-zero.
(iii) A spanning set for \mathbb{R}^{3} which is not a basis for \mathbb{R}^{3}.
(iv) Two subspaces of \mathbb{R}^{3} whose union is not a subspace of \mathbb{R}^{3}.
(v) A real vector space, other than \mathbb{R}^{4}, which is isomorphic to \mathbb{R}^{4}.
(b) U and W are subspaces of a vector space V.
(i) Define the $\operatorname{sum} U+W$ and prove that it is a subspace of V.
(ii) If $U=\operatorname{span}\{(1,1,1,1,1),(0,1,2,1,2),(0,0,1,1,3)\}$ and $W=\operatorname{span}\{(1,2,3,4,5),(0,1,2,3,4)\}$ are subspaces of \mathbb{R}^{5}, find a basis for $U+W$.
Hence state, with a reason, whether or not \mathbb{R}^{5} is the direct sum of U and W.

Question 4

(a) S is the linear map of \mathbb{R}^{2} whose standard matrix is $\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$.
(i) Find the image under S of the unit square with vertices at $(0,0)$, $(1,0),(1,1)$ and $(0,1)$. Hence describe in words the geometrical effect of S.
(ii) State the area scale factor of the linear map S.
(iii) If $\mathbf{u}=\binom{2}{2}$ and $\mathbf{v}=\binom{2}{-2}$, find the images of \mathbf{u} and \mathbf{v} under S. Hence find the matrix which represents S relative to the ordered basis (\mathbf{u}, \mathbf{v}) for \mathbb{R}^{2}.
(b) The linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is represented, relative to the standard ordered bases, by the matrix $\left(\begin{array}{rrrr}2 & 0 & 4 & 2 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 0 & 1\end{array}\right)$.
(i) Find bases for the kernel and the image of T.
(ii) State, with reasons, whether T is (i) injective, (ii) surjective.

Question 5

(a) Let V be a real vector space. State what is meant by an eigenvalue and a corresponding eigenvector of a linear map $T: V \rightarrow V$.
(b) Let A be the matrix $=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 0\end{array}\right)$.
(i) Find and solve the characteristic equation of A .
(ii) Given that $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}0 \\ 1 \\ -2\end{array}\right)$ are three linearly
independent eigenvectors of A , find an orthogonal matrix P and a diagonal matrix D such that $\mathrm{P}^{t} \mathrm{AP}=\mathrm{D}$.
(iii) Hence transform the quadratic form $4 x_{1}{ }^{2}+3 x_{2}{ }^{2}+4 x_{2} x_{3}$ into the form $a y_{1}{ }^{2}+b y_{2}{ }^{2}+c y_{3}{ }^{2}$ where a, b, c are real constants to be found. Express each of y_{1}, y_{2} and y_{3} in terms of x_{1}, x_{2} and x_{3}.
(c) Suppose S and T are linear maps of a vector space V, and $v \in V$ is an eigenvector of both S and T.
Prove that v is an eigenvector of the composite linear map $S T$.

Question 6

(a) If $\mathrm{B}=\left(\begin{array}{rrr}2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2\end{array}\right)$, find $\mathrm{B}^{t} \mathrm{~B}$. Hence find the value of k for which the matrix $k \mathrm{~B}$ represents an isometry of \mathbb{R}^{3}.
(b) U is the subspace of \mathbb{R}^{4} with basis $\{(3,1,-1,3),(5,-1,-5,7),(1,1,-2,8)\}$ Use the Gram-Schmidt process to find a basis for U which is orthonormal relative to the standard inner product on \mathbb{R}^{4}.
(c) Prove that if $\langle u, v\rangle$ is an inner product on a Euclidean space V then $\|u+v\| \leq\|u\|+\|v\|$ for all $u, v \in V$.
[Hint: consider $\|u+v\|^{2}$. You may assume the Cauchy-Schwartz inequality $|\langle u, v\rangle| \leq\|u\| .\|v\|$.
(d) Use the result from part (c) to show that $\|w-v\| \geq\|w\|-\|v\|$ for all $v, w \in V$.

