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Answer any four of the six questions.
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Question 1

(a) Let v1, . . . , vm be elements of a real vector space V . State what is meant
by a linear combination of v1, . . . , vm. [2]

Show that (1, 2, 4) is not a linear combination of (1, 1, 1) and (1,−1, 3).

[5]

(b) Let A be an m × n real matrix. Define the null-space of A and prove
that it is a subspace of Rn. [8]

(c) Find, in parametric form, the solution set of the equations

x1 + 2x2 + 4x3 + 3x4 = 3, 2x1 − x2 − 2x3 + x4 = 1. [7]

(d) Using your answer to part (c), write down the null-space of the matrix(
1 2 4 3
2 −1 −2 1

)
, giving your answer as the span of a set of vectors.

[3]

Question 2

(a) Write down any four of the axioms for a real vector space V . [4]

(b) State what is meant by the dimension of a vector space. [2]

Give an example of a vector space which is not finite-dimensional. [2]

(c) α is the ordered basis (1, x, x2, x3) for P3(R).

Write down the α-coordinates of

(i) 1 + x− x3, (ii) 2 + 2x + x2, (iii) 1 + x + 2x2 + 3x3. [3]

Find the dimension of the subspace of P3(R) spanned by 1 + x− x3,
2 + 2x + x2 and 1 + x + 2x2 + 3x3. [5]

(d) Let V be an n-dimensional vector space and let {u1, . . . , un} be any
linearly independent subset of V .

(i) Prove that every element of V is a linear combination of u1, . . . , un.
(You may assume that any set which contains more than n elements
of V is linearly dependent.) [7]

(ii) Deduce that {u1, . . . , un} is a basis for V . [2]
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Question 3

(a) Give examples of the following:

(i) Two singular 2× 2 matrices whose sum is non-singular. [2]

(ii) A 3× 3 matrix with rank 1, whose entries are all non-zero. [2]

(iii) A spanning set for R3 which is not a basis for R3. [2]

(iv) Two subspaces of R3 whose union is not a subspace of R3. [2]

(v) A real vector space, other than R4, which is isomorphic to R4. [2]

(b) U and W are subspaces of a vector space V .

(i) Define the sum U + W and prove that it is a subspace of V . [8]

(ii) If U = span{(1, 1, 1, 1, 1), (0, 1, 2, 1, 2), (0, 0, 1, 1, 3)} and
W = span{(1, 2, 3, 4, 5), (0, 1, 2, 3, 4)} are subspaces of R5, find a
basis for U + W . [5]

Hence state, with a reason, whether or not R5 is the direct sum of
U and W . [2]

Question 4

(a) S is the linear map of R2 whose standard matrix is

(
1 −1
1 1

)
.

(i) Find the image under S of the unit square with vertices at (0, 0),
(1, 0), (1, 1) and (0, 1). Hence describe in words the geometrical
effect of S. [7]

(ii) State the area scale factor of the linear map S. [2]

(iii) If u =

(
2
2

)
and v =

(
2

−2

)
, find the images of u and v under

S. Hence find the matrix which represents S relative to the ordered
basis (u,v) for R2. [6]

(b) The linear map T : R4 → R3 is represented, relative to the standard

ordered bases, by the matrix




2 0 4 2
0 1 3 −5
0 0 0 1


 .

(i) Find bases for the kernel and the image of T . [7]

(ii) State, with reasons, whether T is (i) injective, (ii) surjective. [3]

SEE NEXT PAGE
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Question 5

(a) Let V be a real vector space. State what is meant by an eigenvalue and
a corresponding eigenvector of a linear map T : V → V . [3]

(b) Let A be the matrix =




4 0 0
0 3 2
0 2 0


.

(i) Find and solve the characteristic equation of A. [5]

(ii) Given that




1
0
0


,




0
2
1


 and




0
1

−2


 are three linearly

independent eigenvectors of A, find an orthogonal matrix P and a
diagonal matrix D such that PtAP = D. [7]

(iii) Hence transform the quadratic form 4x1
2 + 3x2

2 + 4x2x3 into the
form ay1

2 + by2
2 + cy3

2 where a, b, c are real constants to be found.
Express each of y1, y2 and y3 in terms of x1, x2 and x3. [5]

(c) Suppose S and T are linear maps of a vector space V , and v ∈ V is an
eigenvector of both S and T .

Prove that v is an eigenvector of the composite linear map ST . [5]

Question 6

(a) If B =




2 6 3
3 2 −6
6 −3 2


, find BtB. Hence find the value of k for which

the matrix kB represents an isometry of R3. [5]

(b) U is the subspace of R4 with basis {(3, 1,−1, 3), (5,−1,−5, 7), (1, 1,−2, 8)}
Use the Gram-Schmidt process to find a basis for U which is orthonormal
relative to the standard inner product on R4. [8]

(c) Prove that if 〈u, v〉 is an inner product on a Euclidean space V then
||u + v || ≤ || u ||+ || v || for all u, v ∈ V . [8]

[Hint: consider ||u + v ||2. You may assume the Cauchy-Schwartz in-
equality |〈u, v〉| ≤ || u ||.|| v ||.]

(d) Use the result from part (c) to show that ||w− v || ≥ ||w || − || v || for all
v, w ∈ V . [4]

INTERNAL EXAMINER: Dr D.J. Fisher


