UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination
Module MS102 Vector Calculus

Time allowed - 2 hrs
Spring Semester 2007

Attempt FOUR questions. If any candidate attempts more than FOUR questions only the best FOUR solutions will be taken into account.

Question 1

(a) Let $\mathbf{a}=(-1,4,3)$ and $\mathbf{b}=(8,4,-3)$. Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
(b) Find the area of the triangle with vertices at the points $(2,4,5),(1,5,7)$ and $(-1,6,8)$.
(c) Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$. Show that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{i})=a_{2} b_{3}-a_{3} b_{2}
$$

and find similar formulae for $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{j})$ and $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{k})$. Deduce that

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=(\mathbf{a} \cdot(\mathbf{b} \times \mathbf{i})) \mathbf{i}+(\mathbf{a} \cdot(\mathbf{b} \times \mathbf{j})) \mathbf{j}+(\mathbf{a} \cdot(\mathbf{b} \times \mathbf{k})) \mathbf{k} \tag{9}
\end{equation*}
$$

Question 2

(a) In three dimensions, two straight lines have equations

$$
\mathbf{r}=(-1,-1,-1)+t(2,3,4) \quad \text { and } \quad \mathbf{r}=(2,4,-1)+s(1,2,-4)
$$

Prove that these lines intersect and find their point of intersection.
Find, in cartesian form, the equation of the plane which contains both of these lines.
(b) Find a vector normal to the surface

$$
z=x^{2}-x y-y^{2}
$$

at the point $(1,1,-1)$. Also find the equation of the tangent plane to the surface at this point, expressing the answer in cartesian form.

Question 3

(a) Let

$$
f(x, y)=\frac{1}{x}+\frac{4}{y}+\frac{9}{4-x-y}
$$

Find the first and second order partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
If we restrict to $x, y>0$ show that $(x, y)=\left(\frac{2}{3}, \frac{4}{3}\right)$ is a stationary point of $f(x, y)$ and classify it.
(b) Use Lagrange multipliers to determine the length and breadth of the rectangle of largest area that can be fitted inside the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

with all four corners touching the ellipse and the sides of the rectangle being parallel to the coordinate axes.

Question 4

(a) By converting to polar coordinates, show that

$$
\iint_{D} \sqrt{x^{2}+y^{2}+1} d x d y=\frac{\pi}{6}(2 \sqrt{2}-1)
$$

where D is the portion of the disk $x^{2}+y^{2} \leq 1$ that lies in the first quadrant. [NB: you must include the calculation of the Jacobian].
(b) Evaluate $\iint_{D}\left(\frac{x-y}{x+y}\right) d A$, where D is the region enclosed by the straight lines $y=x$, $y=x-1, y=-x+1$ and $y=-x+3$. [Hint: transform to the variables u and v defined by $u=x+y$ and $v=x-y$.

Question 5

Spherical polar coordinates (r, θ, ϕ) are defined by

$$
\begin{aligned}
x & =r \sin \theta \cos \phi, \\
y & =r \sin \theta \sin \phi, \\
z & =r \cos \theta .
\end{aligned}
$$

(a) Draw a diagram to illustrate the geometrical meaning of r, θ and ϕ.
(b) Show that the Jacobian of the transformation from (x, y, z) into (r, θ, ϕ) is $r^{2} \sin \theta$.
(c) Suppose $b>a$. Let V be the region consisting of all points that are between the spheres $r=a$ and $r=b$ and above the (x, y) plane. Show that

$$
\begin{equation*}
\iiint_{V} z \exp \left(\left(x^{2}+y^{2}+z^{2}\right)^{2}\right) d V=\frac{\pi}{4}\left(\exp \left(b^{4}\right)-\exp \left(a^{4}\right)\right) \tag{10}
\end{equation*}
$$

Question 6

(a) State Green's theorem and deduce from it the result that if a region in the (x, y) plane is bounded by a closed curve C then the area of the region is

$$
\begin{equation*}
\frac{1}{2} \int_{C}(-y d x+x d y) \tag{9}
\end{equation*}
$$

where the curve is traversed anticlockwise.
(b) Suppose that C is the line segment from the point $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$. Show that

$$
\begin{equation*}
\int_{C}(-y d x+x d y)=x_{1} y_{2}-x_{2} y_{1} . \tag{9}
\end{equation*}
$$

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ be the vertices of a polygon, in anticlockwise order. Show that the area of the polygon is

$$
\begin{equation*}
\frac{1}{2}\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots+\left(x_{n-1} y_{n}-x_{n} y_{n-1}\right)+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right] . \tag{7}
\end{equation*}
$$

