UNIVERSITY OF SURREY

B. Sc. Undergraduate Programmes in Mathematical Studies
M. Math. Undergraduate Programmes in Mathematical Studies

Level HE1 Examination
Module MS102 Vector Calculus

Time allowed - 2 hrs
Spring Semester 2006

Attempt FOUR questions. If any candidate attempts more than FOUR questions only the best FOUR solutions will be taken into account.

Question 1

(a) Let $\mathbf{a}=(5,-3,-2)$ and $\mathbf{b}=(-3,2,6)$. Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
(b) Find the two values of A such that the planes $A x-y+z=1$ and $3 A x+A y-2 z=6$ are perpendicular.
(c) Explain why the two planes $2 x-y+5 z=5$ and $2 x-y+5 z=15$ are parallel.

Find the equation of the straight line that is perpendicular to these planes and which passes through the point $(0,0,1)$ on the first plane. Find where this line intersects the second plane and hence show that the distance between the planes is $\frac{1}{3} \sqrt{30}$.

Question 2

(a) Explain what it means for two straight lines in three dimensions to be skew.
(b) In three dimensional space, two skew lines have the equations $\mathbf{r}=\mathbf{d}_{1}+\lambda \mathbf{n}_{1}$ and $\mathbf{r}=\mathbf{d}_{2}+\mu \mathbf{n}_{2}$. Let the point A on the first line, and the point B on the second, be such that the line joining A and B is perpendicular to both lines. By considering a certain round trip from the origin back to the origin and involving the two points A and B, or otherwise, show that the distance between the two skew lines is

$$
\begin{equation*}
\left|\left(\mathbf{d}_{2}-\mathbf{d}_{1}\right) \cdot\left(\frac{\mathbf{n}_{1} \times \mathbf{n}_{2}}{\left|\mathbf{n}_{1} \times \mathbf{n}_{2}\right|}\right)\right| \tag{13}
\end{equation*}
$$

(c) Find the distance between the skew lines $\mathbf{r}=(1,1,0)+\lambda(1,-1,1)$ and $\mathbf{r}=(0,1,2)+\mu(2,1,-1)$.

Question 3

(a) A closed rectangular box is to have a volume of $2 \mathrm{~m}^{3}$. The top and bottom are made from material costing 10 pence per square metre, and the sides from material costing 5 pence per square metre. Show that the cost C of the box (in pence) is given by

$$
\begin{equation*}
C(x, y)=20\left(x y+\frac{1}{x}+\frac{1}{y}\right) \tag{7}
\end{equation*}
$$

where x and y are the length and breadth of the base. Find the dimensions of the box which minimise the cost of manufacture. [You must confirm that you have a minimum].
(b) Let $z=f(u, v)$ with $u=x+y$ and $v=x-y$. Show that

$$
\begin{equation*}
\left(\frac{\partial z}{\partial u}\right)^{2}-\left(\frac{\partial z}{\partial v}\right)^{2}=\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \tag{7}
\end{equation*}
$$

Question 4

(a) Evaluate the integral $\iint_{D}\left(x^{2}+y^{2}\right) d A$, where D is the triangular region with vertices $(0,0),(1,0)$ and $(0,1)$.
(b) Show that the sphere $x^{2}+y^{2}+z^{2}=2$ and the paraboloid $z=x^{2}+y^{2}$ intersect in the circle $x^{2}+y^{2}=1, z=1$.
(c) Using cylindrical polar coordinates, find the volume of the solid that is bounded above by the plane $z=1$ and below by the paraboloid $z=x^{2}+y^{2}$. [You may quote without proof that the Jacobian of the transformation into cylindrical polars is r.

Question 5

(a) Explain how to find the extrema of a function $f(\mathbf{x})$ subject to a side constraint of the form $g(\mathbf{x})=0$, where $\mathbf{x} \in \mathbb{R}^{n}$.
(b) Let R be a given fixed number. Find the maximum value of

$$
\begin{equation*}
f(x, y, z)=\ln x+2 \ln y+3 \ln z \tag{14}
\end{equation*}
$$

subject to the constraint that $x^{2}+y^{2}+z^{2}=6 R^{2}$.
Deduce that if x, y and z are positive real numbers then

$$
\begin{equation*}
x y^{2} z^{3} \leq 6 \sqrt{3}\left(\frac{x^{2}+y^{2}+z^{2}}{6}\right)^{3} \tag{6}
\end{equation*}
$$

Question 6

(a) State Green's theorem and use it to show that if a region in the (x, y) plane is bounded by a closed curve C then the area of the region is

$$
\begin{equation*}
\frac{1}{2} \int_{C}(-y d x+x d y) \tag{9}
\end{equation*}
$$

where the curve is traversed anticlockwise. Use this result to find the area of the ellipse $\frac{1}{9} x^{2}+\frac{1}{4} y^{2}=1$.
(b) Suppose that C is the line segment from the point $(1,1)$ to $(3,2)$. Evaluate

$$
\frac{1}{2} \int_{C}(-y d x+x d y)
$$

and state, with reasons, whether the integral represents the area of anything in this case.

