UNIVERSITY OF SURREY ${ }^{\circledR}$

B. Sc. Undergraduate Programmes in Mathematical Studies
Level HE1 Examination
Module MS106 CLASSICAL DYNAMICS

Time allowed - 2 hrs
Spring Semester 2008

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

(a) In an athletics competition a javelin is thrown with a speed of u at an angle of α to the horizontal.

Ignore air resistance and consider the javelin as a point mass of mass m.
(i) Show that the javelin lands at a distance

$$
\frac{2 u^{2} \sin \alpha \cos \alpha}{g},
$$

measured horizontally from its starting point.
(ii) Hence or otherwise deduce the angle α that the javelin thrower should throw the javelin at in order to maximise her chances of winning a medal.
(b) A ball of mass m is thrown vertically upwards with speed V. Model air resistance by a resistive force that is proportional to the speed of the ball with constant of proportionality k.
(i) Draw a diagram showing all the forces acting on the ball.
(ii) Show that the velocity of the ball is given by

$$
\mathbf{v}=\left\{-\frac{m g}{k}+\left(\frac{m g}{k}+V\right) \mathrm{e}^{-\frac{k t}{m}}\right\} \mathbf{j}
$$

where \mathbf{j} is a unit vector pointing upwards.
(iii) Show that the greatest height reached is

$$
\begin{equation*}
\frac{m V}{k}-\frac{m^{2} g}{k^{2}} \ln \left(1+\frac{k V}{m g}\right) . \tag{6}
\end{equation*}
$$

Question 2

(a) A sledge is at rest at the top of a hill that is inclined at an angle of 30° to the horizontal. Assume that the frictional force betwen the sledge and the ground is negligible.
(i) Draw a diagram indicating clearly any forces acting on the sledge.
(ii) It is 100 metres to the bottom of the hill. How long does it take for the sledge to reach the bottom of the hill? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.)
(b) A train of mass m enters some sidings at a speed U. As it enters the sidings the brakes are applied and the train experiences a braking force of $m k$. In addition, there is a frictional force between the track and the train with coefficient of friction μ.
(i) Draw a diagram indicating all the forces acting on the train.
(ii) Find an expression for the time it takes for the train to stop.
(iii) Show that the train travels a distance of

$$
\frac{1}{2}\left(\frac{U^{2}}{k+\mu g}\right)
$$

in this time.
(iv) Calculate the work done by the braking force.
(v) Calculate the work done by the frictional force.
(vi) Calculate the change in kinetic energy of the train.
(vii) Comment on how your answers to (iv), (v) and (vi) relate to each other.

Question 3

(a) A car travelling at $10 \mathrm{~m} / \mathrm{s}$ bumps into a second, stationary, car of the same mass. If the coefficient of restitution between the two cars is $1 / 2$, calculate the speeds of the two cars after the collision. You may assume that the collision is one-dimensional.
(b) A mass m_{A} collides with a mass m_{B} in an inelastic collision. Let the initial velocity of A be $\mathbf{u}_{\mathbf{A}}$ and the initial velocity of B be $\mathbf{u}_{\mathbf{B}}$.
(i) If the final velocity of the combined mass is \mathbf{v} show that

$$
m_{A} \mathbf{u}_{\mathbf{A}}+m_{B} \mathbf{u}_{\mathbf{B}}=\left(m_{A}+m_{B}\right) \mathbf{v}
$$

(ii) If $\mathbf{u}_{\mathbf{A}}$ is perpendicular to $\mathbf{u}_{\mathbf{B}}$ deduce that

$$
u_{A}=\left(\frac{m_{A}+m_{B}}{m_{A}}\right) v \cos \theta,
$$

where θ is the angle between \mathbf{v} and $\mathbf{u}_{\mathbf{A}}, u_{A}$ is the magnitude of $\mathbf{u}_{\mathbf{A}}$ and v is the magnitude of \mathbf{v}.
(iii) Derive a similar expression for u_{B}, where u_{B} is the magnitude of $\mathbf{u}_{\mathbf{B}}$.
(iv) Write down expressions for the total initial and final kinetic energy of the masses.
(v) Show that if $m_{A}=m_{B}$ then the final kinetic energy is half the initial kinetic energy.

Question 4

(a) Tom and his older sister, Rebecca, enter a playground. Tom is of mass 20 kg and sits on the end of a seesaw of total length 4 m . Where should his older sister of mass 30 kg sit in order to balance the seesaw?
(b) A roundabout in the playground consists of a horizontal disc that pivots about the centre of the disc. A bag of mass m is placed on the roundabout at a distance of a from the centre. The coefficient of static friction between the roundabout and the bag is μ_{s}.

Tom starts to spin the roundabout. What is the maximum angular speed that he can spin the roundabout without the bag starting to slide?
(c) The Star Ship Enterprise is spiralling in towards a strange planet with a trajectory given by

$$
\begin{equation*}
r=A \exp (-k \phi), \quad \dot{\phi}=B \exp (2 k \phi) \tag{1}
\end{equation*}
$$

(i) Show that the acceleration of the Enterprise in polar coordinates is

$$
-\frac{A^{4} B^{2}\left(1+k^{2}\right)}{r^{3}} \hat{\mathbf{r}} .
$$

(ii) If the Enterprise is of mass M, what is the force that acts on the Enterprise?
(iii) From equations (1) and given that $\phi=0$ when $t=0$, find $\phi(t)$ and hence $r(t)$. Hence find when the Enterprise will hit the surface of the planet. The planet has radius R.

Question 5

(a) (i) State what is meant by a central force.
(ii) Show that for a central force angular momentum is conserved.
(iii) Explain why for motion of a planet around a fixed mass, as modelled using Newton's law of gravity, it is sufficient to consider motion in two rather than three dimensions.
(b) The total mechanical energy E for a meteor of mass m orbiting a large fixed mass M is given by

$$
E=-\frac{G M m}{r}+\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right) .
$$

The orbit of the meteor is given by

$$
\frac{1}{r}=\frac{1}{l}+A \cos \phi,
$$

where $l=L^{2} / G M m^{2}, L$ is the magnitude of the angular momentum and G is the universal gravitation constant.
(i) Show that

$$
L=m r^{2} \dot{\phi}
$$

and that

$$
\dot{r}=\frac{A L \sin \phi}{m} .
$$

(ii) Hence show that

$$
E=\frac{1}{2} \frac{L^{2} A^{2}}{m}-\frac{1}{2} \frac{G^{2} M^{2} m^{3}}{L^{2}} .
$$

(iii) A meteor is spotted approaching Earth. When first seen it is at a distance of X and travelling at a speed of v_{s} as shown below.

Assuming that the mass of the Earth and the gravitational constant G are known, outline how you would deduce the closest approach of the meteor to the Earth.

