UNIVERSITY OF SURREY ${ }^{\text {© }}$

B. Sc. Undergraduate Programmes in Mathematical Studies
Level HE1 Examination
Module MS106 CLASSICAL DYNAMICS

Time allowed - 2 hrs
Spring Semester 2007

Attempt THREE questions
If a candidate attempts more than THREE questions only the best THREE questions will be taken into account.

Question 1

A ball is thrown from a height h at a wall a horizontal distance d away. The ball is thrown with a speed v and at an angle α measured upwards from the horizontal.
(a) Neglecting air resistance,
(i) show that the ball hits the wall at a height H on the wall where

$$
H=d \tan \alpha-\frac{1}{2} \frac{g d^{2}}{v^{2}} \sec ^{2} \alpha+h
$$

(ii) Show that in order for the ball to hit the wall as high as possible, the ball must be thrown at an angle $\tan ^{-1} v^{2} / g d$.
(iii) Hence find an expression for the maximum height that the ball can hit the wall.
(b) Now suppose that air resistance proportional to the velocity with constant of proportionality k is included.
(i) write down, but do not solve, the equations of motion for the horizontal and vertical directions.
(ii) How would you expect air resistance to affect the answer in (a) for the maximum height reached up the wall?

Question 2

(a) A block slides down a slope of angle α with an initial speed V down the slope.
(i) Show that the acceleration of the block down the slope is given by

$$
g(\sin \alpha-\mu \cos \alpha),
$$

where μ is the coefficient of friction.
(ii) Hence show, assuming that the slope is sufficiently long, the block will eventually stop sliding if $\mu>\tan \alpha$.
(iii) Assuming $\mu>\tan \alpha$, find how long the block takes to come to a stop and how far it goes in this time.
(b) In a one-dimensional perfectly elastic collision a sphere of mass m travelling at a velocity of $2 u$ hits a second sphere of mass $2 m$ travelling at velocity u. Find the velocities of each of the spheres after the collision in terms of u.

Question 3

(a) A ball is dropped from a height h. Assuming that air resistance is negligible
(i) calculate the velocity of the ball when it hits the floor.
(ii) If the coefficient of restitution for collision between the floor and the ball is e, calculate the fraction of the total initial mechanical energy that is lost in each collision.
(iii) Describe the subsequent motion of the ball in each of the three cases $e=1, e=0$ and $0<e<1$.
(b) Consider the force

$$
\mathbf{F}=-k x \mathbf{i}-k y \mathbf{j} .
$$

(i) Show that it is a conservative force by finding a suitable potential function $V(x, y)$.
(ii) The force \mathbf{F} acts on a point mass m. Write down the equation of motion for the
(i) Show that it is a conservative force by finding a suitable potential function $V(x, y)$.
(ii) The force \mathbf{F} acts on a point mass m. Write down the equation of motion for the mass m.
(iii) If at $t=0$ the mass starts from rest at $x=1, y=1$ find the subsequent position of the mass as a function of time.
(iv) Describe the trajectory of the mass.
(v) Calculate the total mechanical energy of the mass. Explain why your answer does not depend on time.

Question 4

(a) A ladder of mass 20 kg and length 6 metres leans against a rough wall at an angle of inclination $\theta=\tan ^{-1} 2$ to the horizontal.
A man of mass 80 kg wishes to climb 4.5 metres up the ladder. Suppose the coefficient of friction between the wall and the ladder and between the floor and the ladder is μ.
(i) Draw a diagram showing all the forces acting on the ladder.
(ii) Show that, at the point of slipping, the frictional force between the wall and the ladder is given by

$$
\frac{100 \mu^{2} g}{1+\mu^{2}}
$$

where g is the acceleration due to gravity.
(iii) Find the minimum value of μ required for the ladder not to slip.
(b) (i) A particle of mass m slides up the inside of a smooth hollow sphere of internal radius a and centre O . At the lowest point, the particle has a speed of $\sqrt{\frac{7}{2} a g}$.
(i) Draw a diagram showing all the forces acting on the particle.
(ii) Find the value of the angle which OP makes with the upward vertical at the point when the particle leaves the sphere.

Question 5

A space shuttle is orbiting the Earth in a circular orbit of radius R metres. When it reaches point P in the diagram shown, it fires it's braking rockets. This has the effect of reducing the speed by $\Delta v \mathrm{~m} / \mathrm{s}$. As a result, the space shuttle follows a new trajectory, as shown, hitting the Earth at Q.

(a) Show that the angular momentum of the space shuttle in it's original circular orbit is given by

$$
\begin{equation*}
\sqrt{G M m^{2} R} \tag{4}
\end{equation*}
$$

where M is the mass of the Earth, m is the mass of the space shuttle.
(b) Hence or otherwise find the speed of the space shuttle at P in its original orbit and deduce that the new speed is given by

$$
\begin{equation*}
\sqrt{\frac{G M}{R}}-\Delta v \tag{6}
\end{equation*}
$$

(c) Given that $R=6.90 \times 10^{6} \mathrm{~m}$ and $\Delta v=1000 \mathrm{~m} / \mathrm{s}$, find the value of β at which the space shuttle hits the Earth.
(You will also need that $M=5.98 \times 10^{24} \mathrm{~kg}, G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ and that the radius of the Earth is $\left.6.37 \times 10^{6} \mathrm{~m}\right)$.
(You may use the fact that a mass m orbiting a mass M, follows a trajectory given by

$$
r=\frac{l}{1+l A \cos \phi},
$$

where $l=L^{2} / G M m^{2}$, where L is the angular momentum.)

