Unassessed Coursework \# 1

1. Compute the curvature $\kappa(t)$ and torsion $\tau(t)$ for the space curve

$$
\gamma(t)=\left(\begin{array}{c}
4 \cos t \\
5-5 \sin t \\
-3 \cos t
\end{array}\right)
$$

where $0 \leq t<2 \pi$.
2. Show that the space curve with parameterisation

$$
\gamma(t)=\left(\begin{array}{c}
5 \cos t \\
3 \cos t-4 \sin t \\
4 \cos t+3 \sin t
\end{array}\right), \quad 0 \leq t<2 \pi
$$

is planar. That is, show that there exists a constant vector $\mathbf{m} \in \mathbb{R}^{3}$ such that

$$
\mathbf{m} \cdot \dot{\gamma}(t)=0,
$$

for all $t \in[0,2 \pi)$.
3. The intersection of the two surfaces in \mathbb{R}^{3}, defined implicitly by

$$
x^{2}+y^{2}=1 \quad \text { and } \quad x+y+z=1,
$$

is a curve. Find a regular parameterisation for this curve.
4. Consider the parametrised curve

$$
\gamma(t)=\left(\begin{array}{c}
2 t \\
t^{2} \\
\ln (t)
\end{array}\right), \quad 0<t<+\infty .
$$

Show that this curve passes through the points

$$
\mathbf{a}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
4 \\
\ln (2)
\end{array}\right)
$$

and find the arc-length of the curve between these two points.
5. Show that

$$
\gamma(t)=\left(\begin{array}{c}
t \\
\sin t \\
\mathrm{e}^{t}
\end{array}\right), \quad-\infty<t<+\infty
$$

and

$$
\widetilde{\gamma}(\widetilde{t})=\left(\begin{array}{c}
\ln (\widetilde{t}) \\
\sin (\widetilde{\ln (\widetilde{t})}) \\
\widetilde{t}
\end{array}\right), \quad 0<\widetilde{t}<+\infty
$$

both represent the same curve. That is, show that $\widetilde{\boldsymbol{\gamma}}(\widetilde{t})$ is a reparametrisation of $\gamma(t)$.
6. Let $\gamma(s)$ be a unit-speed curve in \mathbb{R}^{3}, and assume that its curvature $\kappa(s)$ is non-zero for all s. Define a new curve by

$$
\boldsymbol{\delta}(s)=\boldsymbol{\gamma}^{\prime}(s)
$$

Show that $\boldsymbol{\delta}(s)$ is regular but that it is not in general unit speed, by showing that

$$
\frac{d}{d s} \mathcal{S}=\kappa(s), \quad \mathcal{S}(s):=\int_{0}^{s}\left\|\boldsymbol{\delta}^{\prime}(u)\right\| \mathrm{d} u
$$

that is, \mathcal{S} is the arclength of the curve $\boldsymbol{\delta}(s)$. Show that the curvature of $\boldsymbol{\delta}(s)$ is

$$
\mathcal{K}(s)=\left(1+\frac{\tau^{2}}{\kappa^{2}}\right)^{1 / 2}
$$

when $\kappa(s)$ and $\tau(s)$ are the curvature and torsion respectively for the curve $\gamma(s)$.
7. Let $\kappa(t)$ be the curvature of a regular parameterised curve $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ in the plane. Let \mathbf{R} be a rotation matrix. Every rotation matrix in the plane is of one of two forms

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { or } \quad \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
-\sin \theta & -\cos \theta
\end{array}\right],
$$

where $0 \leq \theta \leq 2 \pi$. Let

$$
\widetilde{\boldsymbol{\gamma}}(t)=\mathbf{R} \gamma(t),
$$

be the original curve rotated in the plane using \mathbf{R}. Show that the curvature $\widetilde{\kappa}(t)$ of the rotated curve $\widetilde{\gamma}$ satisfies

$$
\widetilde{\kappa}(t)=\operatorname{det}(\mathbf{R}) \kappa(t) .
$$

8. A curve $\gamma(t)$ is said to be a spherical curve if there exists a constant vector $\mathbf{a} \in \mathbb{R}^{3}$ (the centre) and a constant radius $r>0$ such that

$$
\begin{equation*}
(\gamma(t)-\mathbf{a}) \cdot(\gamma(t)-\mathbf{a})=r^{2}, \quad \text { for all } t \tag{1}
\end{equation*}
$$

Suppose $\kappa(t) \neq 0$ and $\tau(t) \neq 0$ for this curve. Show that they satisfy

$$
\frac{1}{\kappa^{2}}+\left(\frac{\dot{\kappa}}{\ell \tau \kappa^{2}}\right)^{2}=r^{2} \quad \text { for all } \quad t, \quad \text { where } \dot{\kappa}=\frac{d \kappa}{d t}
$$

(Hint: express $\gamma(t)-\mathbf{a}=c_{1} \mathbf{T}+c_{2} \mathbf{N}+c_{3} \mathbf{B}$, where $(\mathbf{T}, \mathbf{N}, \mathbf{B})$ is a Frenet-Serret frame, and determine the coefficients c_{1}, c_{2} and c_{3} by differenting equation (1) (several times).)

Solutions will be posted for downloading at

