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Question 1

(a) State the mean value property for harmonic functions. [2]

(b) Let D be a disk in R
2. Suppose that u1 and u2 satisfy

△uj = uj for x ∈ D

for j = 1, 2 subject to
u1|∂D = u2|∂D = g,

where g is a given continuous function.

(i) Show that w = u1 − u2 is zero on ∂D and write down the PDE satisfied by w. [2]

(ii) By multiplying this PDE by w and integrating over D, prove that w must be
identically zero in D. The identity

∫

D

w △w dx dy = −
∫

D

|∇w|2 dx dy

may be used without proof. [3]

(iii) How do parts (b)(i) and (b)(ii) prove that the solution to △u = u in D subject
to u = g on ∂D is unique? [2]

(c) Consider △u = 0 on the rectangle R given by

R = {(x, y) : 0 < x < 2, 0 < y < 1}

with boundary conditions as indicated here:

x

u(2, 1) = 0
none

noneu = 0

u = 0

1

y

2

(i) By separating the variables, show that the general solution is of the form

u(x, y) =

∞∑

n=1

An sinh(nπx) sin(nπy) + Bn sinh
(nπy

2

)
sin

(nπx

2

)
,

where the An and Bn are constants. (You may assume that the Laplace operator
in cartesian coordinates is given by △u = uxx + uyy.) [12]

(ii) Suppose we also wish to impose the boundary condition u(x, 1) = h(x), where h

is a given continuous function satisfying h(0) = h(2) = 0. Derive a formula for
the Bn in terms of h. [4]
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Question 2

(a) (i) Compute the Fourier series of the function

f(x) =

{
3 if − 1 < x < 0
0 if 0 < x < 1

extended with period 2 to the real line. [5]

(ii) What can you say about the convergence of the Fourier series? What is its limit?
[4]

(b) Recall that the Fourier transform of a rapidly decaying function f is given by

f̂(k) =
1√
2π

∫
∞

−∞

f(x)e−ikx dx.

Prove that the Fourier transform of the function fbt(x) := f(x + bt) satisfies

f̂bt(k) = eikbtf̂(k),

where b and t are constants. [4]

(c) Show that the Fourier transform of the solution of

ut = uxx + bux x ∈ R, t > 0 (1)

u(x, 0) = u0(x),

where u0 is a given continuous and rapidly decaying function and b is a constant,
satisfies

û(k, t) = eikbte−k2tû0(k).

You may use without proof the fact that

d̂jf

dxj
(k) = (ik)j f̂(k)

for any positive integer j. [5]

(d) Suppose v solves the heat equation

vt = vxx x ∈ R, t > 0

v(x, 0) = u0(x).

What equation is satisfied by the Fourier transform v̂(k, t) of v? [2]

(e) Now assume that the solution v to the equation in part (d) is given by

v(x, t) =
1√
4πt

∫ +∞

−∞

e−
(x−y)2

4t u0(y)dy.

Using this and your answers to parts (b),(c) and (d) above, or otherwise, write down
a formula for the solution u of equation (1). [5]
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Question 3

(a) (i) Find the general solution of

uy + (cos x)2ux = 0 (2)

and plot the characteristics. [7]

(ii) Find a solution of (2) that satisfies u(x, 1) = (1 − tanx)2 for 0 < x < π
2
. [3]

(iii) Does data prescribed on the line {(π
2
, y) : y > 0} determine a solution of (2)?

Justify your answer. [2]

(b) Consider the equation
3uxx − uxt − 2utt = 0. (3)

(i) Let ξ = x+at and η = x+ bt. Use the chain rule to write (3) in terms of ξ and η.

(ii) Choose the constants a and b so that the transformed PDE is

∂2u

∂ξ∂η
= 0.

(iii) Hence show that the general solution to (3) is

u(x, t) = F (2x − 3t) + G(x + t).
[7]

(c) Let u solve the transport equation

cux + ut = 0 x ∈ R, t > 0

subject to u(x, 0) = u0(x), where u0 is a given differentiable function defined on R.

(i) Assuming c is constant, find a solution to this problem. [2]

(ii) Now assume that c is a function of time c(t) = k̇(t) for some smooth function
k. Find the characteristics of the transport equation under these assumptions.
Hence write down the general solution. [4]
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Question 4

(a) Using separation of variables, show that the general solution of

ut = uxx + u 0 < x < π, t > 0

ux(0, t) = ux(π, t) = 0 t > 0

is

u(x, t) = A0e
t +

∞∑

n=1

Ane(1−n2)t cos(nx),

where the An are constants.

If u(0, t) is to remain bounded for all time, what value should A0 take? [9]

(b) Let u be a solution of the following problem:

ut = uxx, 0 < x < 1, t > 0

u(0, t) =
1

4
t2, t ≥ 0

u(1, t) =
1

8
t2, t ≥ 0

u(x, 0) = 4x(1 − x), 0 ≤ x ≤ 1.

For each T ≥ 0, let Ω(T ) = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}.

(i) State the weak maximum principle for solutions of the heat equation subject to
the boundary conditions above. [3]

(ii) Using your answer to (b)(i), show that there is at most one solution to this PDE
problem. [3]

(iii) What is the maximum and minimum value of u over the set Ω(2), and where in
the set do they occur? [4]

(c) Consider the three figures overleaf, each containing a solution at time t = 0 (solid
curve) and t = 1 (dotted curve).

(i) For each figure, state whether the solution could correspond to a solution of the
wave equation subject to the initial condition ut(x, 0) = 0 for x ∈ R. Justify your
answer.

(ii) Could any of the three figures represent a solution to the heat equation? Justify
your answer.

[6]

INTERNAL EXAMINER: J. Bevan

EXTERNAL EXAMINER: D. Chillingworth
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(i)

(ii)

(iii)

Figure 1: Figures for use in Question 4 (c).

INTERNAL EXAMINER: J. Bevan

EXTERNAL EXAMINER: D. Chillingworth


