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Question 1

(a) The Jacobi, Gauss-Seidel and SOR iterations for solving the linear system Ax = b can
all be written in the form

x(k+1) = Mx(k) + c. (1)

(i) By splitting the matrix A into diagonal, lower triangular and upper triangular
parts as A = D + L + U , derive the Jacobi iteration in matrix form. [3]

(ii) State a condition on M for the iteration (1) to converge. [1]

(iii) The solution x of the linear system is also a fixed point of the iteration (1). Show
that the errors e(k) = x − x(k) satisfy

e(k+1) = Me(k). [2]

(iv) Derive the error bound
||e(k)|| ≤ ||M ||k||e(0)||.

[Hint: You may use the results that ||Ax|| ≤ ||A|| ||x|| and ||AB|| ≤ ||A|| ||B||.] [4]

(b) (i) Consider the iteration
xn+1 = g(xn).

Suppose that xn → α as n → ∞ for a given initial value x0.
State the definition of linear and quadratic convergence of this sequence.
State conditions on g for the iteration to converge linearly. [3]

(ii) State the modified Newton method for solving the single nonlinear equation
f(x) = 0 in the form

xn+1 = gm(xn). (2)

When would it be appropriate to use this iteration rather than the Newton iter-
ation? [3]

(iii) Suppose that the modified Newton iteration (2) converges to the fixed point α for
a given initial value x0. Find g′

m(α). State conditions that must be satisfied for
the modified Newton iteration to converge linearly. [4]

Question 2

(a) Derive the Lagrange form of the interpolating polynomial of degree n which satisfies

pn(xi) = fi, i = 0, 1, . . . , n,

where fi is the function value at xi, i = 0, 1, . . . , n. [10]

(b) Show that the interpolating polynomial of degree n is unique. [5]

(c) Find the quadratic polynomial which interpolates the following data and hence find an
approximation to f(1).

x0 = 0, x1 = 2, x2 = 4, f0 = 2, f1 = 4, f2 = −2. [5]
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Question 3

(a) (i) Prove the result

f ′(x0) =
f(x0 + h) − f(x0 − h)

2h
+ ch2 + O(h4)

and find the value of the constant c, which is independent of h. [4]

(ii) Using this result, and the corresponding result obtained by replacing h by h/2,
derive an O(h4) approximation to f ′(x0). [5]

(b) Let pn(x) be the polynomial of degree n which interpolates the function f(x) at the
equally spaced points xk, k = 0, 1, . . . , n, where x0 = a and xn = b. Then you may
assume that

f(x) = pn(x) + en(x)

where

pn(x) =
n∑

k=0

f(xk)Ln,k(x), en(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏

i=0

(x − xi)

with ξ(x) ∈ (a, b).

(i) Use this result to derive the Newton-Cotes formulae for approximating I(f) =∫ b

a
f(x) dx, including the error term. [4]

(ii) Derive the Trapezoidal Rule (n = 1). [3]

(iii) State the error term for the case n = 1 and simplify it using the Mean Value
Theorem for Integrals. [4]

Question 4

(a) (i) Apply the Backward Euler Method to the differential equation

ẏ = −2(t + 1)y + sin t, y(0) = 1

and rearrange the iteration to make it explicit. [4]

(ii) The damped pendulum equation is given by

ÿ + δẏ + ω2 sin y = 0, y(0) = α, ẏ(0) = β.

Write this second order equation as two first order equations and state the itera-
tion obtained by applying Euler’s Method to this system of equations. [5]

(b) Consider the linear boundary value problem

y′′ − 3y′ + y = 0,

y(0) = 1, y′(1) = 2.

Apply the finite difference method to this problem using the mesh points xi = ih
with h = 0.25. Replace the first derivative term in the differential equation and the
boundary condition with an O(h2) approximation. Hence set up, but do not attempt
to solve, a linear system of equations for the determination of yi ≃ y(xi). [11]
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