MAT2013 Unassessed Exercise 1- Semester 1 2011/12

Module: MS Mathematical Statistics
Lecturer: K Young
Due date: Tuesday 1st November (in lecture) 2011

1. Let N be a random variable with geometric (π) distribution.
(a) Show that $P(N>k)=(1-\pi)^{k}$.
(b) Hence, find an expression for $P(N>a+b \mid N>a)$, where a, b are natural numbers, and comment on your result.
(c) A biased die has probability $\frac{2}{5}$ of scoring a six. Let N represent the number of throws up to and including the first six. Given that the first 4 throws do not result in a six, write down the probability that the total number of throws up to and including the first six will be greater than 7 .
2. Let the continuous random variable V have the p.d.f.

$$
\begin{aligned}
f(v) & =2 v, \quad 0<v<1, \\
& =0 \text { elsewhere } .
\end{aligned}
$$

Obtain the p.d.f. of the random variable $W=8 V^{3}$.
3. Let the continuous random variable X have the p.d.f.

$$
\begin{aligned}
f(x) & =1, \quad 0<x<1, \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Obtain the p.d.f. of the random variable $Y=-2 \ln X$.
4. Determine the constant c so that $f(x)=c x(3-x)^{4}, 0<x<3$, zero elsewhere, is a p.d.f.
5. Let X have the p.d.f.

$$
\begin{aligned}
f(x) & =\frac{x-1}{2}, \quad 1<x<3, \\
& =0 \text { elsewhere } .
\end{aligned}
$$

Find a transformation $h(x)$ so that $Y=h(X)$ has a uniform distribution over the interval $(0,1)$.
6. A quality characteristic X of a manufacured item is a continuous random variable with p.d.f.

$$
\begin{aligned}
f(x) & =2 \lambda^{-2} x, \quad 0<x<\lambda, \\
& =0 \text { elsewhere } .
\end{aligned}
$$

where $\lambda>0$. Obtain the distribution function for X and hence find an expression for the median, m, in terms of λ. Find the mean and variance of X.
[Hint: $F(m)=0.5$]
7. The random variable $Y \sim \operatorname{Po}(\lambda)$. Obtain $E\left[Y^{3}\right]$.
[Hint: find $E[Y(Y-1)(Y-2)]$ and use $E[Y]=\operatorname{Var}[Y]=\lambda]$

