Module:MAT2013 Mathematical StatisticsLecturer:K YoungDue date:Lecture on Tuesday 6th December 2011

Please show all working clearly

- 1. Determine the mean and the variance of X if the moment generating function of X is given by
 - (a) $M_X(z) = \frac{1}{(1-3z)};$
 - (b) $M_X(z) = \frac{3}{(3-z)}$.
- 2. Use the Cauchy-Schwartz inequality to prove that
 - (a) $E(X^{-2}) \ge \{E(X^2)\}^{-1}$, and
 - (b) $E\{(X Y)Y\} = 0 \Rightarrow E(Y^2) \le E(X^2).$
- 3. X is a random variable with mean 33 and variance 16. use Chebyshev's inequality to find
 - (a) A lower bound for P(23 < X < 43).
 - (b) An upper bound for $P(|X 33| \ge 14)$.
- 4. Let X have a geometric (π) distribution. Obtain the mgf of X. Given that the negative binomial (n, π) distribution has mgf

$$M_n(z) = \frac{(\pi e^z)^n}{\{1 - (1 - \pi)e^z\}^n}$$

deduce that the negative binomial random variable can be regarded as a sum of n iid random variables with a geometric (π) distribution.

- 5. Let X_1, X_2, \ldots, X_n be independent random variables, such that for $i = 1, 2, \ldots, n$, X_i has a Gamma (α_i, β) distribution. Given that the moment generating function for X_i is $\left(\frac{\beta}{\beta-z}\right)^{\alpha_i}$, show that $Y = \sum_{i=1}^n X_i$ has a Gamma distribution and write the parameters in terms of α_i and β .
- 6. Determine the constant c in each of the following so that each f(x) is a Beta random variable;
 - (a) $f(x) = cx(1-x)^3$, 0 < x < 1, zero elsewhere;
 - (b) $f(x) = cx^4(1-x)^5$, 0 < x < 1, zero elsewhere;
 - (c) $f(x) = cx^2(1-x)^8$, 0 < x < 1, zero elsewhere;