MAT2011 Spring 2011: Unassessed Assignment 7.8

7.8.1 Using d'Alembert's method, solve the wave equation $c^{2} u_{x x}=u_{t t}$ for $x \in \mathbb{R}$ and $t>0$ subject to

$$
\begin{aligned}
u(x, 0) & =e^{-x^{2}} \\
u_{t}(x, 0) & =(\cos x)^{2}
\end{aligned}
$$

for $x \in \mathbb{R}$.
If the initial speed $u_{t}(x, 0)$ had been idenitcally zero, sketch the solution for times $t=0, t=1$ and $t=100$.
7.8.2 A flea is sitting on a piece of string at a distance M from the origin. A hammer of width a strikes the string on the interval $[0, a]$. By modelling the disturbance caused in the string as a solution to the wave equation $c^{2} u_{x x}=u_{t t}$, calculate when the flea first feels the effect of the hammer strike.

7.8 .3

(i) Show that the equation

$$
3 u_{x x}-2 u_{x t}-u_{t t}=0
$$

is hyperbolic and find its general solution. Sketch the characeristics in the (x, t) plane.
(ii) Consider the following non-homogeneous version of the equation above:

$$
3 u_{x x}-2 u_{x t}-u_{t t}=4\left(u_{x}-u_{t}\right) .
$$

By changing to the new variables

$$
\begin{aligned}
\xi & =x-3 t \\
\eta & =x+t,
\end{aligned}
$$

show that the transformed version of the equation is

$$
u_{\xi \eta}=u_{\xi} .
$$

Hence find the general solution of this equation.

7.8.4

(i) Fourier transform both sides of the equation

$$
-u_{t}=u_{x x}
$$

and both sides of the initial condition

$$
u(x, 0)=u_{0}(x)
$$

in order to derive an ODE for $\hat{u}(k, t)$. Solve the resulting ODE (as we did in lectures, although beware the change of sign).
(ii) Can you apply the inverse Fourier transform to the expression you obtain for $\hat{u}(k, t)$? Justify your answer.
(iii) What does this tell you about solutions of the heat equation 'backwards in time?'
[Hint for (iii): $U(x, t)=u(x,-t)$ solves the heat equation 'forwards in time'.]
7.8.5 Let u solve the equation

$$
u_{t}=u_{x x}-a u \quad 0<x<l, t>0
$$

subject to $u_{x}(0, t)=u_{x}(l, t)=0$ for all t. Here, a is a real parameter.
(i) Show that $V(t)$ defined by

$$
V(t)=\frac{1}{2} \int_{0}^{l} u^{2}(x, t) d x
$$

satisfies

$$
\dot{V}(t)=-\int_{0}^{l}\left(u_{x}^{2}+a u^{2}\right) d x
$$

(ii) Deduce that

$$
\dot{V}(t) \leq-2 a V(t)
$$

for all t.
(iii) Let $a>0$. Show that if $\dot{V}\left(t_{0}\right)=0$ then $V\left(t_{0}\right)=0$, and hence that $V(t)=0$ for all $t \geq t_{0}$.
(iv) The result of (iii) above implies that V is strictly decreasing. Does this tell you anything about the limit $\lim _{t \rightarrow \infty} V(t)$?
(v) By integrating the inequality in (ii), show that in fact $V(t) \rightarrow 0$ as $t \rightarrow \infty$. [You may assume $V(0)<\infty$.]
(vi) Now suppose $a \leq 0$. Show that $u=e^{-a t}$ is a solution of the equation which does not converge to zero as $t \rightarrow \infty$.

