MAT2011 Spring 2011: Supplementary Exercises involving Separation of Variables

1. Find the general solution $u(x, t)$ of

$$
\begin{aligned}
u_{t} & =u_{x x}-u, & & 0<x<\ell, \quad t>0 \\
u_{x}(0, t) & =0=u_{x}(\ell, t), & & t>0 .
\end{aligned}
$$

2. Consider the eigenvalue problem

$$
\begin{aligned}
u_{x x} & =\lambda u, \quad 0<x<\ell \\
u_{x}(0) & =k_{0} u(0) \\
u_{x}(\ell) & =-k_{\ell} u(\ell)
\end{aligned}
$$

with mixed boundary conditions, where k_{0} and k_{ℓ} are given positive numbers. Can this system have a nontrivial solution $u \not \equiv 0$ for $\lambda>0$?

Hint: Multiply the first equation by u and integrate over $x \in[0, \ell]$.
3. Using the method of separation of variables, show that a possible general solution to

$$
\begin{aligned}
u_{x x} & =u_{t}, \quad 0<x<\ell, t>0, \\
u_{x}(0) & =0 \\
u_{x}(l) & =0
\end{aligned}
$$

is

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\frac{n^{2} \pi^{2} t}{l^{2}}} \cos \left(\frac{n \pi x}{l}\right)
$$

where the A_{n} are real numbers. If the initial heat distribution satisfies

$$
u(x, 0)=\left(\cos \left(\frac{\pi x}{l}\right)\right)^{2}
$$

find the A_{n}. [The last part of the question can safely be left until Fourier series are introduced at the end of week 2.]

