MAT2011 Spring 2011: Unassessed Homework Assignment \#5

5.1 Find a separable variables solution to Laplace's equation

$$
\triangle u=0
$$

in the quarter disk

$$
Q=\left\{(r, \theta): 0 \leq r<a, 0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

subject to

$$
\begin{aligned}
u(a \cos \theta, a \sin \theta) & =h(\theta) & & 0 \leq \theta \leq \frac{\pi}{2} \\
u(x, 0) & =0 & & 0<x<a \\
u(0, y) & =0 & & 0<y<a .
\end{aligned}
$$

[Hint - We have discussed the Laplacian in plane polar coordinates during lectures; you should adapt that method to the domain Q and use the principle of superposition.]

5.2 Suppose

$$
\triangle u(x, y)=(x, y) \in E
$$

where E is the ellipse

$$
E=\{(a r \cos \theta, b r \sin \theta): 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1\} .
$$

(Here, a and b are fixed positive constants.)
(i) If $u(x, y)=(x+y)^{2}$ whenever $(x, y) \in \partial E$, find the maximum and minimum value of u on the domain E.
(ii) Now suppose $b=a$. Find $u(0,0)$.
5.3 Suppose u_{1} and u_{2} solve Laplace's equation $\triangle u_{i}=0$ on the unit disk in \mathbb{R}^{2} subject to

$$
\begin{aligned}
& u_{1}=g_{1} \text { if }(x, y) \in \partial D \\
& u_{2}=g_{2} \text { if }(x, y) \in \partial D
\end{aligned}
$$

Suppose further that $\min _{\partial D} g_{1}>\max _{\partial D} g_{2}$ for all $(x, y) \in \partial D$. Prove that

$$
u_{1}(x, y)>u_{2}(x, y)
$$

for all points $(x, y) \in D$.
5.4 Let u_{1} and u_{2} be solutions of

$$
\begin{aligned}
u_{t} & =u_{x x}-u & & 0<x<1, t>0 \\
u(0, t) & =h_{0}(t) & & t>0 \\
u(1, t) & =h_{1}(t) & & t>0 \\
u(x, 0) & =g(x) & & 0<x<1 .
\end{aligned}
$$

Prove that $u_{1}=u_{2}$ everywhere in the domain $[0, L] \times(0, \infty)$.
[Hint - Let

$$
e(t)=\int_{0}^{1}(w(x, t))^{2} d x
$$

for all t, where $w:=u_{1}-u_{2}$, and differentiate e with respect to time. Use the example from lectures to guide you.]

