MAT2011 Spring 2011: Unassessed Homework Assignment \#3

3.1 Assume that $g(x)$ is continuous and has period 2ℓ. Prove that

$$
\int_{-\ell}^{\ell} g(x) \mathrm{d} x=\int_{-\ell+a}^{\ell+a} g(x) \mathrm{d} x
$$

is independent of $a \in \mathbb{R}$. In particular, it does not matter over which interval the Fourier coefficients are computed as long as the interval length is 2ℓ. [Remark: This result is also true for piecewise continuous functions].
3.2 Consider the function $f(x)$ defined via

$$
f(x)= \begin{cases}1 & 0 \leq x<1 \\ 2 & 1 \leq x<3\end{cases}
$$

and extended periodically with period 3 to \mathbb{R} so that $f(x+3)=f(x)$ for all x.
(i) Find the Fourier series of $f(x)$.
(ii) Discuss its limit: In particular, does the Fourier series converge pointwise or uniformly to its limit, and what is this limit?
(iii) Plot the graph of $f(x)$ and the limit of the Fourier series.
3.3 Consider the sequence $f_{n}(x)=(1-x) x^{n-1}$ for $x \in\left[0, \frac{1}{2}\right]$. Prove that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly to $f(x)=1$ on $\left[0, \frac{1}{2}\right]$.

