MAT2011 Spring 2009: Unassessed Assignment 1

Please Note: Questions marked with $*$ are intended to be a little bit more challenging.
1.1 Prove that

$$
\int_{0}^{\ell} u_{x x}(x) u(x) \mathrm{d} x \leq 0
$$

for any twice differentiable function $u(x)$ for which $u(0)=u(\ell)=0$.
1.2 Find the solution $u(x, t)$ of

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\lambda u, \quad u(x, 0)=a(x)
$$

1.3 Find the general solution of

$$
u_{x x}+\lambda^{2} u=0
$$

where $\lambda \in \mathbb{R}$ is fixed.
1.4 For each of the following PDEs, determine its order and whether it is linear or not. For linear PDEs, state also whether the equation is homogeneous or not; for nonlinear PDEs, circle all term(s) that are not linear.

1. $x^{2} u_{x x}+\mathrm{e}^{x} u=x u_{x y y}$
2. $\mathrm{e}^{y} u_{x x x x}+\mathrm{e}^{x} u=-\sin y+10 x u_{y}$
3. $y^{2} u_{x x}+\mathrm{e}^{x} u u_{x}=2 x u_{y}+u$
4. $y^{2} v_{x x}+\mathrm{e}^{x}=10 x v_{x y}+v$
5. $u_{x} u_{x x y}+\mathrm{e}^{x} u u_{y}=5 x^{2} u_{x}$
6. $u_{t}=k^{2}\left(u_{x x}+u_{y y}\right)+f(x, y, t)$
1.5 By direct calculation, check that the function

$$
u(x, y)=\sin (x) \frac{\sinh (y)}{\sinh (1)}+\sin (3 x) \frac{\sinh (3 y)}{\sinh (3)}
$$

given in lectures solves the problem

$$
\begin{cases}u_{x x}+u_{y y}=0 & x \in(0, \pi), y \in(0,1) \\ u(0, y)=0 & u(\pi, y)=0 \\ u(x, 0)=0 & u(x, 1)=\sin (x)+\sin (3 x)\end{cases}
$$

1.6* Suppose $u=u(x, t)$ is smooth and solves the heat equation $u_{x x}=u_{t}$ in $-\infty<x<\infty, t>0$.
(i) Show that $u_{\lambda}(x, t):=u\left(\lambda x, \lambda^{2} t\right)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
(ii) Show by a direct calculation that

$$
v(x, t):=x u_{x}(x, t)+2 t u_{t}(x, t)
$$

also solves the heat equation.
(iii) Using only the observation that $\frac{d}{d \lambda} u_{\lambda}$ solves the heat equation (why is this true?), find another proof that v defined above is a solution of the heat equation. [Hint: evaluate $\frac{d}{d \lambda} u_{\lambda}$ for a particular choice of λ.

