Assignment 2 MAT2004 Real Analysis II - 2011/12

Web pages: http://www.maths.surrey.ac.uk/modules/MAT2004.html
Lecturer: Gianne Derks
Due date: Wednesday 30 November 2011, start of lecture

- This assignment is for feedback only and is not part of the assessment of the module. You have to hand in solutions as part of your participation requirement.
- Hand in before the start of the lecture on Wednesday 30 November 2011.
- There are 6 questions, give full workings with your answers.
- It can be a good idea to discuss possible solution strategies with other students, but you are advised to write the solutions itself independently. However, if you work in a group and also write the solutions together, then it is sufficient to hand in just one piece of work with all names of the group members on it.

Question 1 Determine for each of the following statements whether it is true or false, giving a short proof, an example or a counterexample as appropriate.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is odd and differentiable, then f^{\prime} is even.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and f^{\prime} is even, then f is odd.
(c) There exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is strictly monotonic decreasing and has a point $x_{0} \in \mathbb{R}$ with $f^{\prime}\left(x_{0}\right)=0$.

Question 2 The numbers a_{1}, \ldots, a_{n} are such that $a_{1}+2 a_{2}+\cdots+n a_{n}=-1$. Show that there is some $c \in(0,1)$ such that $a_{1}+1+4 a_{2} c+\cdots+n^{2} a_{n} c^{n-1}=0$. (Hint: Find a suitable polynomial to apply Rolle's Theorem.)

Question 3 Find an expression for all odd derivatives of $x^{2} \sin x$.

Question 4

(a) Find the second order Taylor polynomial for $f(x)=\sqrt[3]{x}$ about $x=x_{0}, x_{0}>0$. For which $x \in \mathbb{R}$ is Taylor's Theorem with remainder valid? Using the second order Taylor polynomial, give an estimate for $\sqrt[3]{1001}$ and the error in the approximation.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function for which $f^{(n+1)}$ exists and is continuous and let P_{n} be the n-th order Taylor polynomial of f about x_{0}. Show that the function

$$
G(x)=\left\{\begin{aligned}
\frac{f(x)-P_{n}(x)}{\left(x-x_{0}\right)^{n}}, & x \neq x_{0} \\
0, & x=x_{0}
\end{aligned}\right.
$$

is differentiable at x_{0} and find $G^{\prime}\left(x_{0}\right)$.

Question 5 Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function with $f(x)>m>0$ for $x \in[a, b]$. Let $D=\left\{x_{0}, \ldots, x_{n}\right\}$ be a dissection of $[a, b]$ (hence $x_{0}=a$ and $x_{n}=b$) and define

$$
m_{i}=\inf \left\{f(x) \mid x_{i-1}<x<x_{i}\right\} \quad \text { and } \quad M_{i}=\sup \left\{f(x) \mid x_{i-1}<x<x_{i}\right\}
$$

Define $g:[a, b] \rightarrow \mathbb{R}$ to be $g(x)=\frac{1}{f(x)}, x \in[a, b]$. Express the upper and lower sums $\mathcal{U}(g, D)$ and $\mathcal{L}(g, D)$ using m_{i}, M_{i} and $x_{i}, i=1, \ldots, n$.

Question 6 Let $f:[a, b] \rightarrow \mathbb{R}$ be a positive continuous function, i.e., $f(x) \geq 0$ for all $x \in[a, b]$.
(a) Show that the function $F:[a, b] \rightarrow \mathbb{R}$ defined as $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$ is monotone increasing (i.e., $F(x) \geq F(y)$ if $x \geq y$).
(b) Show that if $\int_{a}^{b} f=0$, then $f(x)=0$ for all $x \in[a, b]$.

