Assignment 2 MAT2004 Real Analysis II – 2011/12

Web pages:http://www.maths.surrey.ac.uk/modules/MAT2004.htmlLecturer:Gianne DerksDue date:Wednesday 30 November 2011, start of lecture

- This assignment is for feedback only and is not part of the assessment of the module. You have to hand in solutions as part of your participation requirement.
- Hand in before the start of the lecture on Wednesday 30 November 2011.
- There are 6 questions, give full workings with your answers.
- It can be a good idea to discuss possible solution strategies with other students, but you are advised to write the solutions itself independently. However, if you work in a group and also write the solutions together, then it is sufficient to hand in just one piece of work with all names of the group members on it.

Question 1 Determine for each of the following statements whether it is true or false, giving a short proof, an example or a counterexample as appropriate.

- (a) If $f : \mathbb{R} \to \mathbb{R}$ is odd and differentiable, then f' is even.
- (b) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f' is even, then f is odd.
- (c) There exists a function $f : \mathbb{R} \to \mathbb{R}$ which is strictly monotonic decreasing and has a point $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$.

Question 2 The numbers a_1, \ldots, a_n are such that $a_1 + 2a_2 + \cdots + na_n = -1$. Show that there is some $c \in (0, 1)$ such that $a_1 + 1 + 4a_2c + \cdots + n^2a_nc^{n-1} = 0$. (Hint: Find a suitable polynomial to apply Rolle's Theorem.)

Question 3 Find an expression for all odd derivatives of $x^2 \sin x$.

Question 4

- (a) Find the second order Taylor polynomial for $f(x) = \sqrt[3]{x}$ about $x = x_0, x_0 > 0$. For which $x \in \mathbb{R}$ is Taylor's Theorem with remainder valid? Using the second order Taylor polynomial, give an estimate for $\sqrt[3]{1001}$ and the error in the approximation.
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function for which $f^{(n+1)}$ exists and is continuous and let P_n be the *n*-th order Taylor polynomial of f about x_0 . Show that the function

$$G(x) = \begin{cases} \frac{f(x) - P_n(x)}{(x - x_0)^n}, & x \neq x_0; \\ 0, & x = x_0 \end{cases}$$

is differentiable at x_0 and find $G'(x_0)$.

Question 5 Let $f : [a,b] \to \mathbb{R}$ be a bounded function with f(x) > m > 0 for $x \in [a,b]$. Let $D = \{x_0, \ldots, x_n\}$ be a dissection of [a,b] (hence $x_0 = a$ and $x_n = b$) and define

$$m_i = \inf\{f(x) \mid x_{i-1} < x < x_i\}$$
 and $M_i = \sup\{f(x) \mid x_{i-1} < x < x_i\}.$

Define $g: [a,b] \to \mathbb{R}$ to be $g(x) = \frac{1}{f(x)}, x \in [a,b]$. Express the upper and lower sums $\mathcal{U}(g,D)$ and $\mathcal{L}(g,D)$ using m_i, M_i and $x_i, i = 1, ..., n$.

Question 6 Let $f : [a, b] \to \mathbb{R}$ be a positive continuous function, i.e., $f(x) \ge 0$ for all $x \in [a, b]$.

- (a) Show that the function $F : [a, b] \to \mathbb{R}$ defined as $F(x) = \int_a^x f$ for $x \in [a, b]$ is monotone increasing (i.e., $F(x) \ge F(y)$ if $x \ge y$).
- (b) Show that if $\int_{a}^{b} f = 0$, then f(x) = 0 for all $x \in [a, b]$.