## Assignment 1 MAT2004 Real Analysis II - 2011/12

Web pages: http://www.maths.surrey.ac.uk/modules/MAT2004.html
Lecturer: Gianne Derks
Due date: Wednesday 26 October 2011, start of lecture

- This assignment is for feedback only and is not part of the assessment of the module. You have to hand in solutions as part of your participation requirement.
- Hand in before the start of the lecture on Wednesday 26 October 2011.
- There are 4 questions, give full workings with your answers.
- It can be a good idea to discuss possible solution strategies with other students, but you are advised to write the solutions itself independently. However, if you work in a group and also write the solutions together, then it is sufficient to hand in just one piece of work with all names of the group members on it.

Question 1 Find $\lim _{x \rightarrow 3} \frac{3 x+1}{x+2}$ and use the definition to show that this is the limit.

Question 2 Let $\lim _{x \rightarrow x_{0}} f(x)=l$ and $\lim _{x \rightarrow x_{0}} g(x)=m$. Show that $\lim _{x \rightarrow x_{0}} \max \{f(x), g(x)\}=\max \{l, m\}$. Hint: show that $\max \{f(x), g(x)\}=\frac{1}{2}(f(x)+g(x)+|f(x)-g(x)|)$.

Question 3 Using the Intermediate Value Theorem, show that the equation $1-\cos \pi x=x^{2}$ has a strictly positive solution.

Question 4 Define $f:(0, \infty) \rightarrow \mathbb{R}$ as $f(x)=x \ln x$. It can be shown that $f(x) \leq x \sqrt{x}$ for $x \geq 4$ (you don't have to do this).
(a) Show that $f(x) \geq-\sqrt{x}$ for $0<x<\frac{1}{4}$.
(b) Show that $\lim _{x \downarrow 0} f(x)$ exists and find the limit.

