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Question 1

(a) Use LU-decomposition to solve the following linear system: 2 −1 3
4 3 4
−8 19 −14

 x1
x2
x3

 =

 −3
−5
23

 .
[13]

(b) State a general formula for det(A) in terms of L and U and use this formula to compute
det(A) for the matrix in part (a). [3]

(c) The backward difference approximation to the derivative f ′(x0) with error term is given
by

f ′(x0) =
f(x0)− f(x0 − h)

h
+ ch+O(h2).

Prove this result and find the value of the constant c, which is independent of h. [4]

Question 2

(a) Consider the iteration
xn+1 = g(xn).

Suppose that xn → α as n→∞ for a given initial value x0.

(i) State the definition of quadratic convergence of this sequence, including the defi-
nition of the asymptotic error constant. [3]

(ii) Prove that if g′′(x) is continuous, g′(α) = 0 and g′′(α) 6= 0 then the iteration
converges quadratically.
What is the value of the asymptotic error constant? [7]

(iii) State Newton’s method for finding a solution of the equation f(x) = 0.
If g is the iteration function for Newton’s method, show that g′(α) = 0, where α
is a simple root of f (i.e. f(α) = 0, f ′(α) 6= 0).
What is the significance of this result? [6]

(b) Devise an iteration for determining N1/3 by applying the Newton iteration to an equa-
tion which has this value as a solution. [4]



MAT2001/3/ Sem2 10/11 (0 handouts) –3–

Question 3

(a) Let pn−1(x) be the polynomial of degree n − 1 which interpolates the function values
f0, f1, . . . , fn−1 at the points x0, x1, . . . , xn−1 and let pn(x) be the polynomial of degree
n which interpolates these data points together with the additional point (xn, fn).

(i) Show that

pn(x) = pn−1(x) + f [x0, x1, . . . , xn](x− x0)(x− x1) . . . (x− xn−1)

where f [x0, x1, ..., xn] is a constant.

(ii) Use this result to construct the divided difference form of the interpolating poly-
nomial pn(x).
(Note: You do not need to derive a formula for the coefficients f [x0, x1, ..., xn].)

(iii) What is the advantage of using the divided difference form of the interpolating
polynomial rather than the Lagrange form? [8]

(b) Consider the following data:

x0 = 1, x1 = 2, x2 = 4, f0 = 9, f1 = 10, f2 = 18.

For this data, construct (i) the piecewise linear interpolant and (ii) the quadratic
interpolating polynomial.
Use both of these approximations to estimate the function at x = 3. [12]

Question 4

(a) (i) State Euler’s method and the backward Euler method for solving the initial value
problem

ẏ = f(t, y), y(0) = α.

(ii) State one advantage of Euler’s method over the backward Euler method.

(iii) Define the local truncation error for Euler’s method and show that it is O(h2),
where h is the stepsize. [7]

(b) Apply the backward Euler method to the differential equation

ẏ = −2ty + cos t, y(0) = 2,

and rearrange the equation to derive an explicit iteration. [4]

(c) The function f(x) is known at one point x∗ in the interval [a, b]. Using this value, f(x)
can be expressed as

f(x) = p0(x) + f ′(ξ(x))(x− x∗)
for x ∈ [a, b], where p0(x) is the zeroth-order interpolating polynomial p0(x) = f(x∗)
and ξ(x) ∈ (a, b).

(i) Integrate this expression from a to b to derive a quadrature rule with error term.

(ii) Simplify the error term for the case when x∗ = a.

(iii) Show that the quadrature rule is exact when f(x) = c for any constant c.

(iv) Find a value of x∗ such that the quadrature rule is exact when f(x) = x. [9]
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