
Summary Notes on Tensors

The following notes contain a summary of the material you need to know on
geodesics. Remember as always that these notes are not a substitute for
reading the book, but simply summarise the key points.

Part C: GEODESICS

In flat space there are two ways of thinking of a straight line. One way
of thinking of it is as a curve which does not change direction. The other
way of thinking of it is as a curve which gives the shortest distance between
two points. In a curved space the first concept generalises to what is called
an affine geodesic while the second generalises to a metric geodesic. We will
look at both these concepts and show that they coincide if one uses the metric
connection. We will also show how geodesic coordinates may be used to prove
tensor identities.

§1 Affine Geodesics

Let
xa = xa(t), p ≤ t ≤ q (1)

be the equation of a curve γ. Then

V a(t) =
dxa

dt
(t)

is a tangent to the curve at the point t.

If T a...
b... is some tensor field, then we define the absolute derivative, D

Dt , of the
tensor along the curve by

D

Dt
T a...

b... = V c∇cT
a...
b... (2)

so that the absolute derivative is the covariant derivative in the direction of
the tangent vector V .

If one has a curve whose tangent vector does not change in direction or length
as one moves along the curve then

DV a

Dt
= 0 (3)
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However if we still demand that the direction is fixed but allow the length to
change then it need only satisfy the weaker condition that any change in the
tangent vector is in the same direction as the tangent vector so that

DV a

Dt
= λV a (4)

for some scalar field λ. Therefore a curve which does not change direction
satisfies the condition

V b∇bV
a = λV a (5)

Now
∇bV

a =
∂V a

∂xb
+ Γa

bcV
c

Putting V a = dxa

dt , this gives

∇bV
a =

∂

∂xb

(
dxa

dt

)
+ Γa

bc

dxc

dt

Hence (5) becomes

dxb

dt

∂

∂xb

(
dxa

dt

)
+ Γa

bc

dxb

dt

dxc

dt
= λ

dxa

dt
(6)

Since we may use the chain rule to write dxb

dt
∂

∂xb = d
dt then (6) becomes

d2xa

dt2
+ Γa

bc

dxb

dt

dxc

dt
= λ

dxa

dt
(6.34)

We call (6.34) the equation of an affine geodesic (with a general parameter).

If γ is an affine geodesic it is always possible to find a new parameter s so
that V a = dxa

ds has constant length, (ie. gabV
aV b = const.).

With this choice
DV a

Ds
= 0

so that (6.34) becomes

d2xa

ds2
+ Γa

bc

dxb

ds

dxc

ds
= 0 (6.37)
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We call such a parameter an affine parameter and equation (6.37) that of an
affinely parameterised affine geodesic.

§2 Metric Geodesics

The Calculus of Variations

We first look at the problem of finding the maximum (or minimum) of an
integral which depends upon an arbitrary function x(t) and its derivative
ẋ(t). We therefore consider integrals of the form

I =
∫ q

t=p

L(x(t), ẋ(t))dt (7)

where L(x, ẋ) is a given function of two variables and x(t) is a function we
are free to choose subject to the boundary conditions that

x(p) = k1 and x(q) = k2 for fixed constants k1 and k2. (8)

Let x(t) be some function which satisfies these boundary conditions and η(t)
be an arbitrary function which satisfies the boundary conditions η(p) = 0,
η(q) = 0. Then for any value of ε the function

x̃(t) = x(t) + εη(t)

also satisfies the required boundary conditions (8). Note also that when ε = 0
then x̃(t) = x(t).

Suppose now that (somehow) we have found the function x(t) which gives the
minimum value of the integral. Then if we define

f(ε) =
∫ q

t=p

L(x(t) + εη(t), ẋ(t) + εη̇(t))dt (9)

We see that this must have a minimum at ε = 0, since x(t) gives the minimum
value of the integral. Thus

f ′(0) = 0 (10)

However
df

dε
=

∫ q

t=p

dL

dε
dt

=
∫ q

t=p

(
∂L

∂x
η(t) +

∂L

∂ẋ
η̇(t)

)
dt

3



Integrating the second term by parts we get

df

dε
=

[
∂L

∂ẋ
η(t)

]q

t=p

+
∫ q

t=p

(
∂L

∂x
η(t)− d

dt

∂L

∂ẋ
η(t)

)
dt

=
∫ q

t=p

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
η(t)dt

Since the first term vanishes because η(p) = 0 and η(q) = 0.

Therefore f ′(0) = 0 implies that
∫ q

t=p

(
d

dt

∂L

∂ẋ
− ∂L

∂x

)
η(t)dt = 0 (11)

for all possible choices of η. The only way that this can be true is if

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (12)

Therefore if x(t) is to give the minimum value of the integral I then it must
satisfy the differential equation (12). We call this equation the Euler-Lagrange
equation for I.

We can also consider the more general case where the function L depends
upon the curve xa(t) and its derivative ẋa(t) so that

I =
∫ q

t=p

L(xa(t), ẋa(t))dt (13)

Then in this case the maxima (and minima) of I occur when xa(t) satisfies
the Euler-Lagrange equations

d

dt

∂L

∂ẋa
− ∂L

∂xa
= 0 a = 1, . . . , n (14)

The equation of a metric geodesic

In order to calculate the equation of a metric geodesic we wish to minimise

I =
∫

ds (15)
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We therefore take

L(xa(t), ẋa(t)) =
(
gbcẋ

b(t)ẋc(t)
)1/2

=
ds

dt
(16)

(See equation (25) of part A).

With this choice of L we have

∂L

∂ẋa
= (gabẋ

b)(gcdẋ
cẋd)−1/2

= (gabẋ
b)/

ds

dt

Differentiating with respect to t gives:

d

dt

(
∂L

∂ẋa

)
= (gab,cẋ

cẋb)/
ds

dt
+ (gabẍ

b)/
ds

dt
− (gabẋ

b)
d2s

dt2
/(

ds

dt
)2

On the other hand

∂L

∂xa
=

1

2
gbc,aẋbẋc(gdeẋ

dẋe)−1/2

=
1

2
gbc,aẋbẋc/

ds

dt

In order to simplify these expression we now choose to parameterise the curve
by the length s. If we do this then t = s and hence

ds

dt
= 1,

d2s

dt2
= 0 (17)

So that
d

ds

(
∂L

∂ẋa

)
= (gab,cẋ

cẋb) + gabẍ
b

and
∂L

∂xa
=

1

2
gbc,aẋbẋc

The Euler-Lagrange equations are then given by

gabẍ
b + (gab,c − 1

2
gbc,a)ẋbẋc = 0 (18)
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Multiplying by gad this gives

gabg
adẍb +

1

2
gad(gab,c + gac,b − gbc,a)ẋbẋc = 0 (19)

So if we let Γa
bc be the metric connection (see part B equation (6.71)) we may

write this as
ẍd + Γd

bcẋ
bẋc = 0 (20)

which is the equation of an affinely parameterised, affine geodesic. Hence we
see that if we use the metric connection, an affine geodesic is a metric geodesic
and length is an affine parameter.

We end this section by showing that we get the same Euler-Lagrange equations
by again choosing the length s as our affine parameter, but now minimising

I =
∫

gbcẋ
bẋcds (21)

(Note the absence of the square root).

In this case we have
L = gbcẋ

bẋc

Hence
∂L

∂ẋa
= 2gabẋ

b

so that
d

ds

(
∂L

∂ẋa

)
= 2gab,cẋ

cẋb + 2gabẍ
b

Also
∂L

∂xa
= gbc,aẋbẋc

So the Euler-Lagrange equations are

2gabẍ
b + 2gab,cẋ

cẋb − gbc,aẋbẋc = 0 (22)

which apart from the irrelevant overall factor of 2 agrees with (18). It is
this form of L (without the square root) that we use in practise to calculate
geodesics.
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Example

In plane polar coordinates the metric of 2-dimensional Euclidean space is
given by

ds2 = dr2 + r2dφ2 (23)

So that
L = ṙ2 + r2φ̇2 (24)

We get two Euler-Lagrange equations, one for the r coordinate and one for
the φ coordinate. We first consider the r-equation.

∂L

∂ṙ
= 2ṙ

d

ds

(
∂L

∂ṙ

)
= 2r̈

∂L

∂r
= 2rφ̇2

So that the Euler-Lagrange equation for the r coordinate is

d

ds

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 ⇒ r̈ − rφ̇2 = 0 (25)

We now consider the φ-equation

∂L

∂φ̇
= 2r2φ̇

d

ds

(
∂L

∂φ̇

)
= 4rṙφ̇ + 2r2φ̈

∂L

∂φ
= 0

So that the Euler-Lagrange equation for the φ coordinate is

d

ds

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 ⇒ φ̈ +

2
r
ṙφ̇ = 0 (26)

On the other hand if we choose (x1, x2) = (r, φ), a (rather long) direct calcu-
lation using formula (6.71) from part B shows

Γ1
22 = −r, Γ2

21 = Γ2
12 =

1
r
, Γa

bc = 0, otherwise
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So that (25) and (26) are just

ẍa + Γa
bcẋ

bẋc = 0 (27)

as claimed.

§3 Geodesic Coordinates

In proving tensor identities it is often useful to work in a special coordinate
system which simplifies the calculation and then use the fact that one is
working with tensors to deduce that the identity is true in any coordinate
system. A particularly useful choice of coordinates is that given by a geodesic
coordinate system. Given any point P on a manifold it is possible to introduce
local coordinates so that

gab,c
∗=0 at P (28)

where the symbol ∗= indicates that the result is only true in geodesic coordi-
nates and might not be true in an other coordinate system.

It is important to realise that since (28) is only true at the point P we cannot
differentiate it, so that in general gab,cd will not be zero at P even if one works
in geodesic coordinates.

A consequence of (28) is that

Γa
bc

∗=0 at P (29)

so that near P the coordinate lines are approximately geodesics.

It also follows from (28) that

gab
,c
∗=0 at P (30)

We can use (29) and (30) to obtain some simple expressions for the curvature
in geodesic coordinates at P . We first note that substituting for Γa

bc in (6.39)
and using (29) gives

Ra
bcd

∗=Γa
bd,c − Γa

bc,d at P (31)

Then differentiating (6.71) and using (30) gives

Γa
bc,d

∗=
1

2
gae(gec,bd + geb,cd − gbc,ed) at P (32)
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Substituting in (31) now gives

Ra
bcd

∗=
1

2
gae(ged,bc + gbc,ed − gbd,ec − gec,bd) at P (33)

Lowering the index a gives

Rabcd
∗=

1

2
(gad,bc + gbc,ad − gbd,ac − gac,bd) at P (34)

This equation may be used to establish a number of identities involving Ra
bcd.

For example from (34) it easily follows that

Rabcd −Rcdab
∗=0 at P (35)

However this implies that

Rabcd −Rcdab = 0 at P (36)

in any coordinate system (since (35) is a tensor equation). Finally since the
point P was arbitrary we can conclude that

Rabcd −Rcdab = 0 everywhere (37)

which establishes equation (6.79) of part B. In a similar way one can use
geodesic coordinates and (34) to prove that

Rabcd + Racdb + Radbc = 0 (38)

(See Exercise 6.23)
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