
Summary Notes on Tensors

The following notes contain a summary of the material you need to know on
tensor calculus. Remember however that these notes are not a substitute
for reading the book, but simply summarise the key points.

Part B: TENSOR CALCULUS

§1 The covariant derivative

Recall that if φ is a scalar field then the derivative Na = φa is a covariant
vector. We now ask the following question:
If Xa is a covariant vector is Sab = Xa,b a type (0, 2) tensor?

To answer this question we calculate S in the x′ coordinates. By definition

S′ab =
∂

∂x′b
(X ′

a)

=
∂

∂x′b

(
∂xc

∂x′a
Xc

)

=
∂2xc

∂x′b∂x′a
Xc +

∂xc

∂x′a
∂

∂x′b
Xc

=
∂2xc

∂x′b∂x′a
Xc +

∂xc

∂x′a
∂xd

∂x′b
∂

∂xd
Xc

=
∂2xc

∂x′b∂x′a
Xc +

∂xc

∂x′a
∂xd

∂x′b
Xc,d

=
∂xc

∂x′a
∂xd

∂x′b
Scd +

∂2xc

∂x′b∂x′a
Xc

However for a tensor field Tab one has

T ′
ab =

∂xc

∂x′a
∂xd

∂x′b
Tcd

So that Xa,b fails to transform as a tensor due to the term involving the second
derivative of the transformation.

In order to obtain a tensor when one differentiates, one needs some extra
structure which cancels out this extra term when one changes to a new coor-
dinate system.
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We therefore define the covariant derivative (which we denote with a semicolon
rather than a comma) by

Xa;b = Xa,b − Γc
abXc (1)

Where Γa
bc is an object called the connection. We will see a way of specifying

the connection in terms of the metric in the next section, but for the moment
the important thing to note is that Γa

bc transforms according to

Γ′abc =
∂x′a

∂xd

∂xe

∂x′b
∂xf

∂x′c
Γd

ef +
∂x′a

∂xd

∂2xd

∂x′b∂x′c
(6.24)

Therefore Γa
bc also has a second derivative term which prevents it transforming

as a tensor. However if one considers the combination in equation (1) one
finds that the ‘bad’ terms exactly cancel out and the covariant derivative
does indeed transform as a tensor so that

X ′
a;b =

∂xc

∂x′a
∂xd

∂x′b
Xc;d

In the same way one can define the covariant derivative of a (contravariant)
vector

Y a
;b = Y a

,b + Γa
bcY

c

Again one can show that this combination transforms as a tensor, but this
time one needs the alternative form of the transformation law of Γa

bc given by

Γ′abc =
∂x′a

∂xd

∂xe

∂x′b
∂xf

∂x′c
Γd

ef +
∂xd

∂x′b
∂xe

∂x′c
∂2x′a

∂xd∂xe
(6.23)

These two expression may be shown to be equivalent by differentiating

∂x′a

∂xd

∂xd

∂x′c
= δa

c

with respect to x′b (see exercise 6.3).

It is also possible to take the covariant derivative of a general tensor. One
simply requires a Γ term for each index.

Example
T a

bc;d = T a
bc,d + Γa

edT
e
bc − Γe

bdT
a
ec − Γe

cdT
a
be
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(see also equation (6.27) of the set book).

Notation

Rather than write a partial derivative using a comma like Xa
,b we will some-

times use the partial derivative symbol and write ∂bX
a

In the same way rather than write a covariant derivative using a semicolon
like Xa

;b we will sometimes use the inverted triangle symbol and write ∇bX
a.

It is also useful to have a symbol for V b∇bX
a which represents the covariant

derivative of Xa in the direction of the vector V . We will sometimes write
this as ∇V Xa

Torsion

As we have seen the connection Γa
bc does not transform as a tensor however

if one looks at
T a

bc = Γa
bc − Γa

cb (2)

then the second derivative terms cancel and one finds that T a
bc transforms as a

tensor. We call the tensor T a
bc the torsion of the connection. Mathematically it

is possible to consider connections with non-zero torsion (and in some physical
theories it is used to describe the spin of particles). However the attitude we
will take is to work with a torsion free connection, and if we wish to describe
any physics which depends on torsion explicitly add it in the form of an
additional tensor field T a

bc. For the rest of the unit you may therefore assume
that

Γa
bc = Γa

cb (6.28)

Note that since the torsion is a tensor, if it vanishes in one coordinate sys-
tem then it vanishes in every coordinate system so that (6.28) is true in all
coordinate systems even though Γa

bc is not a tensor.

The metric connection

Given a metric gab it is possible to obtain a unique formula for Γa
bc in terms

of the metric by demanding that it also satisfies the condition

∇cgab = 0 (6.73)

This is very natural as it means we treat the covariant derivative of both the
contravariant form Xa, and covariant form Xa of a vector on an equal footing.
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We can either differentiate Xa and then lower the index with gab or lower the
index first and then differentiate. In other words

gab∇cX
a = ∇cXa (3)

We will also see later that (6.73) means that the two possible generalisations
of a straight line to curved space – firstly as a curve which doesn’t change
direction (an affine geodesic) and secondly as the shortest distance between
two points (a metric geodesic) – coincide as the single concept of geodesic.

A connection which satisfies both (6.28) and (6.73) is called the Levi-Cevita
connection or metric connection. Using (6.28) and (6.73) one can obtain the
following formula for the metric connection

Γa
bc =

1

2
gad(∂bgdc + ∂cgdb − ∂dgbc) (6.71)

Note in some books a special symbol is used for the components of the metric
connection. These are called the Christoffel symbols of the first and second
kind and are given in equations (6.62) and (6.64) of the set book.

§2 The Riemann curvature tensor

If one uses the partial derivative ∂a then the order of differentiation does not
matter. So for example

∂c∂dX
a − ∂d∂cX

a = 0 (4)

However, if one works with the covariant derivative then (in general) this is
not true so that

∇c∇dX
a −∇d∇cX

a 6= 0 (5)

Although the right hand side does not vanish it only depends linearly upon
the vector X (since the terms involving the second derivative of X vanish due
to (4) and those involving the first derivative vanish due to the torsion free
condition (6.28)). The right hand side of (5) therefore has the form La

bXb.
However the linear transformation L depends upon the values of c and d so
that we may write

∇c∇dX
a −∇d∇cX

a = Ra
bcdX

b (6.38)

We finally remark that the left hand side is a tensor (since the covariant
derivative of a tensor is a tensor), so the right hand side is also a tensor.
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Since X is an arbitrary vector this means that Ra
bcd is also a tensor. Thus

(6.38) defines a type (1, 3) tensor called the Riemann curvature tensor.

If we use the formula (1) to write the covariant derivative in terms of the
partial derivative and the connection Γa

bc one can obtain an expression for
Ra

bcd in terms of the connection and its derivatives.

Ra
bcd = ∂cΓa

bd − ∂dΓa
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed (6.39)

Note that it is not at all obvious from the above expression that Ra
bcd are

the components of a tensor even though we know from (6.38) that it must be.
Since equation (6.71) gives an expression for Γa

bc in terms of the metric gab and
its partial derivatives, one can in principle write down an expression for the
curvature tensor in terms of gab and its first and second partial derivatives.
However the resulting expression is rather long and not very helpful so we
will not give it here.

Symmetries of the Curvature tensor

Since the curvature tensor Ra
bcd has four different indices, each of which can

take n different values, the curvature tensor has 4n different components.
So that in 4-dimensions it has 44 = 256 different components. However the
curvature tensor also satisfies a number of algebraic identities so that not all
these components are independent.

For example it is easy to see from (6.38) that it is antisymmetric on the last
two indices and thus

Ra
bcd = −Ra

bdc (6.77)

It is not so obvious, (but is not too hard to prove), that the curvature also
satisfies the identity

Ra
bcd + Ra

cdb + Ra
dbc = 0 (6.78)

Finally if one lowers the first index to obtain Rabcd = gaeR
e
bcd then the tensor

is symmetric on interchanging the first and last pair of indices so that

Rabcd = Rcdab (6.79)

Note combining (6.79) and (6.77) gives

Rabcd = −Rbacd
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So the completely covariant form of the curvature tensor is also antisymmetric
on the first two indices as well as the last two.

All these symmetries reduce the number of independent components of the
curvature tensor to 1

12n2(n2−1) which in 4-dimensions is 20 (rather than the
256 we started with).

As well as these algebraic symmetries the curvature tensor satisfies an impor-
tant differential identity called the Bianchi identity. This says that

∇aRd
ebc +∇cR

d
eab +∇bR

d
eca = 0 (6.82)

The Ricci curvature, Scalar Curvature and Einstein tensor

If we start with the curvature tensor Rabcd it is possible to construct new
tensors by contracting on two of the indices. For example we could look
at gabRabcd. However since the first term is symmetric on a and b, while
the second term is antisymmetric on a and b this contraction gives zero (see
exercise 5.11). So instead we consider the contraction on the first and third
index

Rbd = gacRabcd (6.83)

In general this does not vanish but gives a tensor Rab called the Ricci tensor
or Ricci curvature. The identity (6.79) implies that this tensor is symmetric,
so that

Rab = Rba

Because of this symmetry this tensor has 10 (rather than 16) independent
components in 4-dimensions. One can also consider contraction on any other
pair of indices, but these either vanish (eg on 3 and 4) or else give the same
answer as the Ricci tensor (eg on 2 and 4). Physically the Ricci tensor is
important because in Einstein’s theory of General Relativity it is the part of
the curvature which couples to the matter.

It is also possible to contract the two indices of the Ricci tensor to obtain a
scalar

R = gabRab (6.84)

which is called the scalar curvature.

One can then combine the Ricci curvature with the scalar curvature and the
metric to form the Einstein tensor Gab which is defined by

Gab = Rab − 1

2
gabR (6.85)
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The reason we add on the second term to the Ricci curvature is to obtain a
quantity with vanishing divergence

∇aGa
b = 0 (6.86)

This identity is called the contracted Bianchi identity and will turn out to
be important physically, because when combined with Einstein’s equations it
implies the conservation of energy and momentum.

The Weyl Curvature

In 4-dimensions we have seen that the curvature has 20 independent com-
ponents, 10 of these components can be described using the Ricci curvature
which is obtained by contracting (or taking the trace) on a pair of indices.
The remaining 10 components may be described in terms of a tensor Cabcd

which has the same symmetries as the Riemann curvature tensor but also has
the property that it is completely trace free (this means that if one contracts
on any pair of indices one gets zero). In 4-dimensions the Weyl curvature
may be defined in terms of the Riemann, Ricci and scalar curvature by the
equation

Cabcd = Rabcd +
1

2
(gadRcb + gbcRda − gacRdb − gbdRca) +

1

6
(gacgdb − gadgbc)R

(6.87)
Physically the Weyl curvature is important because it is the only part of the
curvature which is non-zero in the absence of matter. It is therefore the part
of the curvature which describes gravitational radiation.

Mathematically the Weyl tensor is also important because it is conformally
invariant. That is, if one defines a new metric

ḡab = Ω2gab (6.90)

where Ω is a scalar field, then the Weyl curvature of the new metric is the
same as the Weyl curvature of the old metric (when written in the (1, 3) form).
That is:

C̄a
bcd = Ca

bcd (6.91)
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