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In order to discuss how we can construct suitable stress-energy tensors, 
we need to understand the role of energy and momentum in relativity 
better.

We already know that, in absence of forces, a body moves according to (in 
the local inertial frame)

SR dynamics

0
adu

dτ
=

When there are forces present, we can introduce an analogue of Newton’s 
2nd law by writing

This can’t be “derived”, but it satisfies key criteria;

― principle of relativity; it is in tensor form

―reduces to the force-free equation 

―reduces to Newton’s 2nd law at low velocities
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It now makes sense to introduce the four acceleration as

Four acceleration

      
a

a a adua f ma
dτ

= ⇒ =

In a general frame this leads to                        .
a b a

ba u u= ∇
It is worth noting that the normalisation of the four velocity means that 
we must have

In other words, there are only three independent equations of motion –
just like in Newtonian physics.
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The equation of motion that we have written down leads naturally to the 
relativistic ideas of energy and momentum.

We define the four momentum as

We also have

Four momentum

      
a

a a adpp mu f
dτ

= ⇒ =

2 2a
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In a general inertial frame, moving with velocity vi relative to the local 
inertial frame, we have

It then follows that, at low velocities, we have
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Natural to interpret pt=E as the energy and pi as the three momentum.
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Solving our relations for the energy, we arrive at

which shows that the rest mass is part of the energy of a relativistic 
particle. 

For a particle at rest, and in the usual units, we have

This is, perhaps, the most famous equation in all of physics…

(

Energy

)1 22 2E m p= +

2E mc=

Note: It may be more appropriate to refer to pa as the “energy-momentum”
four vector. 

Also… it is the four momentum that is conserved in particle colliders like the 
LHC.
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In order to build our intuition of the description of matter in relativity, it 
is useful to start by considering the number density of a gas.

Let us consider a box containing N particles. At rest, the volume of the box 
is V* . Then the number density of particles in the box is simply

Number density
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What happens if the box is moving?

Because of length contraction, the 
volume will be smaller;

but the total number of particles is 
the same, so the number density 
increases
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We see that the number density is nut. This suggests that we should 
introduce the particle flux four vector as 

a an nu=

Number conservation

This means that we have

Using the argument that leads to the conservation of particles in fluid 
dynamics (flux through surface of some volume…) we can show that 
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We have seen how the number density current relates a scalar quantity 
with a volume. Let us now suppose that we want a similar argument for 
energy and momentum.

These are, however, given by the four-momentum. To relate this object 
with a volume, we need a tensor of rank 2. 

Energy momentum tensor

This leads us to the energy-momentum tensor;

 energy density energy flux
momentum density stress tensor
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= ⎜ ⎟
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= = =

Consider the moving box, and assume that all particles are at rest with 
respect to the box. Then
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