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So far, we have only discussed how we can take first derivatives of a 
tensor. We will now consider what happens if we need second derivatives. 

It is quite easy to see that, in a curved spacetime, 2nd derivatives will not 
commute (recall the “untwisting” of the basis required to take the “limit”
in the same tangent space). 

However, since tensor calculus is linear, we should (quite generally) have

This defines the Riemann tensor which provides a measure of the 
spacetime curvature. 

From the definition we see that it must be anti-symmetric in the last two 
indices.

One can also prove (a bit harder) that it must be anti-symmetric in the 
first two indices and symmetric if the first and last pair of indices are 
interchanged.

  
a a a b

c d d c bcd

Riemann

A A R A∇ ∇ − ∇ ∇ =

  
a
bcdR
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In addition to the symmetries, the Riemann tensor must satisfy the so-
called Bianchi identities. These are four relations, that can be written

(cyclic permutation…)

Combining all this information one can work out that the Riemann
tensor has 20 independent components. 

They can be calculated from

In other words, they follow from second partial derivatives of the 
metric gab.

Bianchi

0e abcd c abde d abecR R R∇ + ∇ + ∇ =

              
a a a a e a e
bcd c bd d bc ce bd de bcR = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ
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By contracting pairs of indices we obtain lower rank tensors. 

Contract first and third index to get the Ricci tensor;

Note that, due to the symmetries this is the only contraction of the 
Riemann tensor. Contracting on other indices can only give      . 

  
c
bcd bd db

Ricci

R R R= =

  
a
aR R=

Contract the remaining two indices to get the Ricci scalar;

bdR±
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As an exercise, let us carry out the Ricci contraction on the Bianchi 
identities;

Another contraction leads to

Einstein

( )
      

0

  

ac
e abcd c abde d abec

c c c
e bd c bde d bec e bd c bde d be

g R R R

R R R R R R

= ∇ + ∇ + ∇ =

= ∇ + ∇ + ∇ = ∇ + ∇ − ∇

( )

( )

  0

  2

  2 2

be c
e bd c bde d be

b c b b
bd cd d bd db

b b
bd db bd

g R R R

R R R R g R

R g R G

= ∇ + ∇ − ∇ =

= ∇ + ∇ − ∇ = ∇ − ∇ =

= ∇ − = ∇

This defines the Einstein tensor Gab, which must satisfy the above 
differential constraint.

This object will be of great importance later. In fact, we will find that 

are the Einstein field equations in vacuum.

1
2 0ab ab abG R g R= − =
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Given a description of the curvature, we can now consider the relative 
changes in two neighbouring geodesics. 

To do this, let us assume that the geodesics are separated by a (spatial) 
vector ξa, such that

Our aim is to understand how ξa is affected by the spacetime curvature.

0a
au ξ =

Geodesic deviation
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Use the proper time τ as parameter for the geodesics and label them by 
a parameter λ, such that 

then

This leads to

or, in component form;

          
a a

a ax xu
λ τ

ξ
τ λ

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

0b a b a
b bu uξξ ξ ξ∇ − ∇ = ∇ − ∇ =u u

( )ξ ξ ξξ∇ ∇ = ∇ ∇ = ∇ ∇ − ∇ ∇u u u u uu u

( ) ( )c a b b b a c
c a a c c au u u u uξ ξ∇ ∇ = ∇ ∇ − ∇ ∇

The relative acceleration is caused by the failure of second derivatives to 
commute. We have the equation for geodesic deviation;

( )   
c a b b d a c

c a dacu u R u uξ ξ∇ ∇ = −
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We are aiming to link the spacetime curvature to gravity. In order to do 
this we need to understand what we mean by “curvature”. 

Distinguish between intrinsic and extrinsic curvature.

Extrinsic curvature considers the surface in a higher dimensional flat 
space. 

Intrinsic curvature measures to what extent parallel transported vectors 
remain parallel: 

Spacetime curvature

flat curved
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In a curved spacetime the result of parallel propagation depends on the 
path.

Parallel lines do not remain parallel when extended (cf. great circles on 
the sphere).

Meanwhile, in a flat spacetime parallelism is global. 

Relating this to geodesics, we see that geodesics in flat space maintain 
their separation, while those in curved spaces don’t. 

From the equation for geodesic deviation;

We then see that the Riemann tensor provides a measure of the 
curvature. 

In a flat spacetime must vanish.

Note: A spacetime is flat if all Γa
bc , and their derivatives, vanish. 

In a curved spacetime we can make Γa
bc and the first derivatives vanish, 

but the second derivatives will be non-zero.

( )   
c a b b d a c

c a dacu u R u uξ ξ∇ ∇ = −

  
a
bcdR
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How do we “measure” the spacetime curvature?

Lift experiments (again)

Idea: There should be a link with geodesic deviation.

The tidal force of the gravitational field can be represented by the 
spacetime curvature.
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Newtonian problem
Let a person standing on the surface of the Earth drop two objects in such 
a way that they initially fall along parallel trajectories. Assume that the
two objects are “ideal" in the sense that their motion is only affected by 
gravity. 

We know that gravity attracts towards the 
centre of the Earth so the trajectories of the 
two objects should eventually cross. 

In Newtonian physics, this happens because 
of the universal gravitational attraction.

Let us describe this problem mathematically. 
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Taking the separation vector to be ξi we must have, since the trajectories 
start out parallel;

The second derivatives will not vanish so, in general we should have

This defines the tidal tensor E. We need to relate it to the gravitational 
potential Φ. We know that the acceleration should be proportional to the 
gradient of the potential. That is, 

0
id

dt
ξ

=

2

  2

i
i j
j

d E
dt

ξ ξ= −

2

2

i
id x

dt
= −∇ Φ

The separation vector is defined as                           so (Taylor expanding) we i i i

find that
A Bx xξ = −

2 2 2

  2     
i

ik j i ik ik
j kjk j k j

d E E
dt x x x x

ξ δ ξ δ δ
⎛ ⎞∂ Φ ∂ Φ

= − ⇒ = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
Once we know the gravitational potential, i.e., the mass distribution, we 
can work out the relative motion of the two particles.
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Spacetime description
In a curved spacetime, the problem works out quite differently…

We obviously need to consider the equation 
for geodesic deviation. Hence, we take as our 
starting point

Opting to work in the local inertial frame of 
A, we have

and it follows that

( )   
c a b b d a c

c a dacu u R u uξ ξ∇ ∇ = −

0 01       0       0      0j ju u ξ ξ= = = ≠

( )
2

    0 0   0 02

j
j j a b c j b j k

abc b kR u u R R
t
ξξ ξ ξ ξ∂

∇ ∇ = = − = − = −
∂u u

0 0j k jkR E=
Comparing to the Newtonian result, we identify
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We now have a contraint on the curved spacetime theory (Newtonian 
correspondence). However, we need to make the model covariant…

From Newtonian theory, we also know that

This suggests that we want our field equations to look something like

But this is not covariant – we should have spacetime indices. Hence, we 
could use

Inspired by this, Einstein suggested that the field equations of relativity 
should be

where the stress-energy tensor Tab (more later) is such that (weak fields)

2
 4 jk jk j

j k jk jG E Eπ ρ δ δ= ∇ Φ = ∇ ∇ Φ = =

  0 0 4j
jR Gπ ρ=

00   0 0 4a
aR R Gπ ρ= =

4ab abR GTπ=

00T ρ≈
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This suggestion satifies many of the requirements… yet it still fails.

A closer look shows that 

4ab abR GTπ=

provides 10 equations for the 10 unknown metric coefficients. Just what 
we would want… or is it?
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This suggestion satifies many of the requirements… yet it still fails.

A closer look shows that 

4ab abR GTπ=

provides 10 equations for the 10 unknown metric coefficients. Just what 
we would want… or is it?

In fact, it is not. 

The geometric description allows us to freely choose the coordinate 
system. In principle, We can use this freedom to make four of the metric 
functions anything we want. The problem is overdetermined.

We need to formulate the field equations in such a way that we have six 
independent equations.
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With 100 years of hindsight…
… the solution is simple.

We should use 

1 8
2ab ab ab abG R g R GTπ= − =

The contracted Bianchi identities provide the four constraints 

Which implies that we must also have

As we will see later, this implies the conservation of energy and 
momentum.

0a
abG∇ =

0a
abT∇ =

“Space tells matter how to move and matter tells space how to curve.”

John Wheeler
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Special relativity

I. Space and time are represented by a four dimensional manifold with 
symmetric connection         and metric tensor satisfying:

a) the metric gab is non-singular (with signature -2)

b) 

c)

II. There are privileged classes of curves;

a) ideal clocks travel along timelike curves and measure “proper” time

b) free particles travel along timelike geodesics

c) light rays travel along null geodesics

0a bcg∇ =

  0a
bcdR =

a
bcΓ
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General relativity

I. Space and time are represented by a four dimensional manifold with 
symmetric connection         and metric tensor satisfying:

a) the metric gab is non-singular (with signature -2)

b) 

c)

II. There are privileged classes of curves;

a) ideal clocks travel along timelike curves and measure “proper” time

b) free particles travel along timelike geodesics

c) light rays travel along null geodesics

0a bcg∇ =
   8ab abG GTπ⇒ =

a
bcΓ

  0a
bcdR =
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