Null coordinates

Coordinates

We have seen that the Schwarzschild solution describes a non-rotating black hole. The event horizon, at $r=2 M$, represents a one-way membrane through which no information can leak back into the exterior.
However, we also know that the standard Schwarzschild metric is singular at $r=2 M$.

We will now discuss how this problem can be fixed by a clever choice of coordinates (we are dealing with a coordinate singularity not a physical singularity).
Before we do this, it is worth considering the nature of the coordinates.
Generally, one can show that the character of a given coordinate t, say, depends on

$$
g^{t t}\left\{\begin{array}{l}
>0 \text { timelike } \\
=0 \text { null } \\
<0 \text { spacelike }
\end{array}\right.
$$

For the Schwarzschild solution

$$
g_{a b} d x^{a} d x^{b}=\left(1-\frac{2 M}{r}\right) d t^{2}-\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

We see that:
$-t$ is timelike for $r>2 M$, but becomes spacelike inside the horizon,

- the radial coordinate r, which is spacelike for $r>2 M$, becomes timelike inside the black hole.

This reflects the fact that, once inside the event horizon, all objects fall towards the centre.

It is also worth noting that r is a radial coordinate in the usual sense. The surface area of a 2 -sphere is $4 \pi r^{2}$.

Eddington-Finkelstein

To remove the singularity at $r=2 M$, we change the time-coordinate:

$$
t \rightarrow \bar{t}=t+2 M \ln (r-2 M)
$$

Then

$$
d \bar{t}=d t+\frac{2 M}{r-2 M} d r \quad \Rightarrow \quad d t=d \bar{t}-\frac{2 M}{r}\left(1-\frac{2 M}{r}\right)^{-1} d r
$$

We now have

$$
d t^{2}=d \bar{t}^{2}-\frac{4 M}{r}\left(1-\frac{2 M}{r}\right)^{-1} d \bar{t} d r+\frac{4 M^{2}}{r^{2}}\left(1-\frac{2 M}{r}\right)^{-2} d r^{2}
$$

This leads to

$$
\begin{aligned}
& \left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2} \\
& =\left(1-\frac{2 M}{r}\right) d \bar{t}^{2}-\frac{4 M}{r} d \bar{t} d r+\left(1-\frac{2 M}{r}\right)^{-1}\left(\frac{4 M^{2}}{r^{2}}+1\right) d r^{2} \\
& =\left(1-\frac{2 M}{r}\right) d \bar{t}^{2}-\frac{4 M}{r} d \bar{t} d r-\left(1+\frac{2 M}{r}\right) d r^{2}
\end{aligned}
$$

The Schwarzschild line element becomes

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d \bar{t}^{2}-\frac{4 M}{r} d \bar{t} d r-\left(1+\frac{2 M}{r}\right) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

which is regular at $r=2 M$.
Note: The singularity at $\mathrm{r}=\mathrm{o}$ is a true physical singularity.

Our final result becomes simpler if we introduce the (ingoing) null coordinate

$$
v=\bar{t}+r=t+r+2 M \ln (r-2 M)=t+r_{*}
$$

where r_{*} is often called the "tortoise coordinate".
Then we get

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d v^{2}-2 d v d r-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

From this it is quite easy to show that $g^{v v}=0$ so v is a null coordinate.
For radial null geodesics we get

$$
\left(1-\frac{2 M}{r}\right) d v^{2}-2 d v d r=0 \Rightarrow \begin{cases}v=\text { constant } & \text { (ingoing) } \\ \frac{d v}{d r}=2\left(1-\frac{2 M}{r}\right)^{-1} & \text { (outgoing) }\end{cases}
$$

The ingoing Eddington-Finkelstein coordinate spacetime diagram becomes

Note: Even though the metric is regular at $r=2 M$, the behaviour of the outgoing light rays is pathological at the horizon.

For outgoing light rays, we can define an analogous null coordinate;

$$
u=t-r_{*}
$$

in terms of which the line element becomes

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d u^{2}+2 d u d r-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

In fact, we can combine the advanced coordinate v and the retarded coordinate u in such a way that the line element becomes

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d u d v-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Then r is a function which is implicitly given by

$$
\frac{1}{2}(v-u)=r+2 M \ln (r-2 M)
$$

This "double-null" form of the line element is very useful.

Kruskal-Szekeres

Focusing our attention on the case $\theta=$ constant, $\phi=$ constant, we have

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d u d v
$$

It is relatively easy to show that this is conformally flat. Introducing

$$
t=\frac{1}{2}(v+u) \quad x=\frac{1}{2}(v-u)
$$

we have

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) \underbrace{\left(d t^{2}-d x^{2}\right)}_{\text {flat }}
$$

The light cones are now all as in flat space, and both incoming and outgoing light rays are straight lines.

Making a further coordinate transformation, we arrive at the KruskalSzekeres form of the Schwarzschild solution;

$$
d s^{2}=\frac{32 M^{3}}{r} \exp \left(-\frac{r}{2 M}\right)\left(d V^{2}-d U^{2}\right)-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where

$$
V^{2}-U^{2}=\left(1-\frac{2 M}{r}\right) \exp \left(\frac{r}{2 M}\right)
$$

This represents the maximal analytic extension of the Schwarzschild metric.

MATH3006
Relativity, black holes and cosmology

Penrose-Carter

One great advantage of using null coordinates is that one can "compactify" the spacetime. The idea is to consider a new "unphysical" metric given by

$$
\bar{g}_{a b}=\Omega^{2} g_{a b}
$$

and such that the points at infinity are brought to a finite position.
This leads to the so-called Penrose-Carter diagram.
Singularity

