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For light rays in the Schwarzschild spacetime we have

Recap: Null geodesics
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where s is a suitable affine parameter.
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Let us focus on radial light rays.

Then we have

or

Radial light rays
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Taking the plus sign and integrating, we find

2 ln 2 constantt r M r M= + − +

We see that r=2M divides the spacetime into two regions.
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With the other sign we find

2 ln 2 constantt r M r M= − − − +

Now we get

These results seem a bit peculiar, but can be understood if we consider the 
relevant spacetime diagram.

The light cone structure puts constraints on the possible history of an 
observer. An observer moves on a timelike world-line that must, at each 
point, lie within the future light cone.

As r approaches 2M, the light cones close…
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In fact, at r=2M the light cones “tilt over”.

This suggests that, once inside r=2M light cannot escape to infinity.

It is, however, not obvious that we can trust these results because the 
Schwarzschild metric is singular at r=2M;
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The surface r=2M is known as the event horizon. No signal emitted from 
inside r=2M can reach the exterior. 

This is a black hole.

Black holes

A useful illustration is provided by spherical wavefronts in the equatorial 
plane. As we move closer to the origin the points from which the waves 
emanate are not longer at the centre of each wavefront.

All photons are dragged inwards, towards the singularity at the origin. 
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We get a different perspective on this problem if we consider the radial 
motion of massive particles.

Test particles move on timelike geodesics, so we have

where τ is the proper time.

For radial motion we also have

Infalling particles
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Combining the two results we have
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If we suppose that the particle is released from rest at infinity, we must have

Then the problem reduces to 

Note: sign is chosen such that the particle is infalling.

After integration, we obtain the radial position as a function of proper time;

This result (in fact, identical to the Newtonian result) shows that the particle 
reaches the origin in a finite proper time. Nothing special happens as the 
particle crosses r=2M. 
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Let us compare this result to what happens in coordinate time.

Then we need 

This is not very easy to integrate, but after some work one can show that, if r
is close to 2M then 

from which it follows that

In other words, it takes an infinite amount of coordinate time (t) to reach 
r=2M.

This demonstrates that the coordinate t is not very useful near the event 
horizon of a black hole. 
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As a slight aside, it is worth noting that one can argue for the existence of 
black holes also in Newtonian gravity.

Consider an object with mass M and radius R. 

We can work out the escape velocity from the kinetic energy and the 
gravitational potential energy for a moving object.

The total energy 

is conserved. For an object that reaches infinity, we must have E=0 (why?). 

Thus, the escape velocity is given by

Newtonian argument

21
2

GME mv
r

= −

2
esc

2GMv
R

=



MATH3006 
Relativity, black holes and cosmology

For a given mass M we can make the escape velocity as large as we want by 
making the central object more compact. 

However, we will reach the speed of light when

The gravitational field is then so strong that not even light can escape. 

This is a “black hole”.

This idea was first suggest by John Michell over 200 years ago. However, it 
was abandoned as the particle theory of light fell out of fashion. 
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It is interesting to note the similarities between the 
Newtonian black hole and its relativistic 
counterpart. 

In both cases, the event horizon is given by  

The interpretation is, however, very different. 

In the Newtonian picture, light rays can be emitted 
from the surface. They simply do not reach an 
observer at infinity.

In relativity the horizon is a one-way membrane 
that does not allow information to leak to the 
outside Universe.
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