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and the gravitational red-shift
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Let us consider light rays in the Schwarzschild spacetime;

Null geodesics
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This means that we consider null geodesics, such that

As before, this leads to 
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The only difference is that we are no longer using the proper time as 
parameter. Instead, s is a suitable affine parameter.
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Three of the Euler-Lagrange equations, remain as in the case of timelike
geodesics. 

These define the conserved angular momentum J and the energy E as

We also find that equatorial orbits, with q=p/2, remain in the equatorial 
plane.

The radial equation is, however, different. We now have

which leads to
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Taking a derivative of the  final equation for equatorial null geodesics, we 
have

This shows that, for circular orbits with r=R=constant, we must have

This is known as the unstable photon orbit. 

It is the only circular null geodesic that exists in the Schwarzschild 
geometry.
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Light bending
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As in the timelike case, we re-write the radial equation in terms of  u=1/r
where u=u(φ). That is, we use

to get
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After taking another derivative we have

In flat space, M=0, we have the straight line solution;
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To find an approximate solution to the curved spacetime equation, let us 
look for a solution of form (taking φ0=0 w.l.o.g.) 

Then we need to solve

Rewrite this as

which has solution

1
1 sin 3       where      3  is small (in a suitable sense)u Mu M
D

φ= +

2
2 2 21

1 1 12 2

ignore

3 63 sin sin  9d u M MM u u M u
d D D

φ φ
φ

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠

( )
2

1
12 2

1 1 cos 2
2

d u u
d D

φ
φ

+ ≈ −

( )1 1
1 2 3

1 cos sin 1 cos 2u A B2
homogeneous particular integral

D
φ φ φ

⎡ ⎤
⎢ ⎥= + + +
⎢ ⎥
⎣ ⎦



MATH3006 
Relativity, black holes and cosmology

The complete solution is; 
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We are mainly interested in the accumulated effect, so consider the 
asymptotes. Since the incident ray is along the x-axis, we get
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In normal units, the final deflection angle is

For light rays that graze the edge of the Sun, this works out to 1.75 arcseconds.

The effect was first confirmed by an expedition led by Eddington during the 
1919 solar eclipse. The precision was, however, not very good.

The most accurate measurements of light bending have been carried out by 
long baseline radio interferometry for distant quasars. 
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Shapiro time delay
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In 1964 Irwin Shapiro suggested a closely related effect, the so-called time 
delay. To see how this works, consider motion along a straight line in the 
equatorial plane (=leading order);

Using this in the Schwarzschild line element we get

This leads to (expanding in M/r)

The last term in the brackets represents the time delay. 

Lunar laser ranging has measured this effect with good precision.
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Gravitational red-shift
Consider an observer at fixed radius R in the Schwarzschild spacetime, 
that emits a light signal. When emitted the signal has frequency ω0. What 
is the frequency observed at infinity?

Generally, the frequency of a photon measured by an observer with four 
velocity ua is

In a sense, this relation defines the normalisation of parameter s.

For a static observer, the normalisation condition for the four velocity 
leads to
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Combining these results we have

But the energy, E, is conserved along a geodesic. So we find that, for a photon 
emitted at r1 and observed at r2 , the frequencies are related by

Taking r1=R and r2=     we find

The observed frequency is lower - it has shifted towards the red.

The effect was first verified by Pound and Rebka in 1960, by firing gamma 
rays upwards a distance of 72 feet in the Earth’s gravitational field. 

1/2 1/22 2= 1 1M dt M E
r ds r

ω ⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1/2

2 1

1 2

1 2
1 2

M r
M r

ω
ω

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

∞
1/221 M

R
ω ω∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠


	Light bending, time delay � and the gravitational red-shift
	Null geodesics
	Light bending
	Shapiro time delay
	Gravitational red-shift

