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When Einstein first formulated the field equations of general relativity, he 
was convinced that they would be extremely difficult to solve. 

In general, this is true. One would have to be able to handle nonlinear, 
coupled, partial differential equations with a large of terms. 

However, many exact solutions to the equations are now known. In fact, 
solutions can be generated quite “easily” via computer algebra packages 
like Maple.

Unfortunately, most such solutions have no physical relevance. 

Most useful solutions represent problems that are simplified because of 
symmetries. 

The classic example is the Schwarzschild solution, which represents the 
exterior gravitational field of a non-rotating body. 

This solution is static and spherically symmetric.

Symmetries
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It is generally very difficult to find analytic solutions to the Einstein 
equations in situations representing systems with dynamics. 

The problem is much simplified if one considers stationary or static 
systems. 

Stationary vs static

Since we have the freedom to work with any set of coordinates we like, we 
need to introduce these familiar concepts carefully. We will take;

― stationary, to mean that the metric is time-independent (but 
evolutionary)

― static, to mean that there is no “motion” (time-reversal symmetric)

Mathematically, a spacetime is stationary if we there exists a coordinate 
system with time coordinate t such that 

0abg
t

∂
=

∂
If the spacetime is static, then it is also the case that                .  0 0ig =
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The form of the line element for a spherically symmetric spacetime can be 
deduced starting from the result for a 2-sphere with radius a;

The general line element should reduce to this form if we use “spherical”
coordinates (t,r,θ,φ) and set t=constant, r=constant.

This leads to the general form

where the coefficients A, B, C and D are all functions of t and r.

( )2 2 2 2 2sinds a d d

Spherical symmetry

θ θ φ= +

( )2 2 2 2 2 22 sinds Adt Bdtdr Cdr D d dθ θ φ= − − − +

Note: invariance under reflection means that

which explains why there cannot be any cross terms of the form dtdθ , drdφ
etcetera.

      
          

d d
d d

θ π θ θ θ
φ φ φ φ
→ − ⇔ = −
→ − ⇔ = −
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Introducing new coordinates, we can rewrite the line element;

First, introduce a new radial coordinate 

( )2 2 2 2 2 22 sinds Adt Bdtdr Cdr D d dθ θ φ= − − − +

( )2 2 2 2 2 2 2

( , )    

            2 sin

r D t r

ds A dt B dtdr C dr r d dθ θ φ

′ = ⇒

′ ′ ′ ′ ′ ′= − − − +

( )dt dt B A dr′ ′ ′= −

( )( , )I t r dt dt B A dr′ ′ ′ ′= −

Next, we would like to simplify the combination

say, by completing the square to get 

but… this is not a perfect differential. We need an integrating factor

Then we get

2 22A dt B dtdr C dr′ ′ ′ ′ ′− −

2
2 2 2 2 2 2

22 C BA dt B dtdr C dr A Idt A I dr Adt Cdr
A A
′ ′⎛ ⎞

′ ′ ′ ′ ′ ′ ′ ′ ′− − = − + = −⎜ ⎟′ ′⎝ ⎠
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Defining

and “dropping” all tildes and primes, we have the general spherically 
symmetric line element;

where

( )2 2 2 2 2 2 2sinds e dt e dr r d dν λ θ θ φ= − − +

   and   A e C eν λ= =

( , )   and   ( , )t r t rν ν λ λ= =
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Substituting the metric that leads to the general line element

into the vacuum Einstein equations we find the following three 
independent equations;

Schwarzschild

( )2 2 2 2 2 2 2sina b
abds g x x e dt e dr r d dν λ θ θ φ= = − − +

  0
0 2 2

  1
0

  1
1 2 2

1 10                                       (i)

0                                                         (ii)

1 10                            

G e
r r r

G e
r

G e
r r r

λ

λ

λ

λ

λ

ν

−

−

−

′⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

= = −

′⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

        (iii)
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We immediately see that 

So we have an ODE for λ;

For reasons that will become clear later, we let the integration constant be 
2m to get

( )rλ λ=

( )2 2

1 1 0      1      constantde re re r
r r r dr

λ λ λλ− − −′⎛ ⎞− + = ⇒ = ⇒ = +⎜ ⎟
⎝ ⎠

12 21     or    1  m me e
r r

λ λ
−

− ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠
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Next, we subtract equations (i) and (iii) to get

Hence, we have

( ) 0      0      ( )e h t
r

λ

λ ν λ ν λ ν
−

′ ′ ′ ′+ = ⇒ + = ⇒ + =

( ) 21h t me e
r

ν ⎛ ⎞= −⎜ ⎟
⎝ ⎠

( )
1

2 ( ) 2 2 2 2 2 22 21 1 sinh tm mds e dt dr r d d
r r

θ θ φ
−

⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Finally, introduce a new time coordinate such that

to get the standard form for the Schwarzschild solution

( )
1

2 2 2 2 2 2 22 21 1 sinm mds dt dr r d d
r r

θ θ φ
−

⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) 2 2 ( )/2      h t h te dt dt t e dt′ ′= ⇒ = ∫

and the line element becomes
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In order to give an interpretation of m we need to consider the Newtonian, 
weak field, limit.

For weak gravitational fields and slow motion, one can show that

Weak field limit

00 2

21g
c
Φ

≈ +

Using the gravitational potential 

we have

Note: One usually works with “geometric” units where G=c=1, so m=M.

GM
r

Φ = −

00 002 2

2 21     compared to   1       GM m GMg g m
rc r c

≈ − = − ⇒ =
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The Schwarzschild solution is;

― spherically symmetric

― static

― asymptotically flat (approaches Minkowski as               )r →∞

Final remarks

Note: We did not impose the static condition. It came out of the
calculation…

Birkhoff’s theorem: A spherically symmetric and asymptotically flat 
solution is necessarily static.

Implication: No gravitational waves in spherical symmetry…
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