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In order to describe electromagnetic fields, we need a covariant form of 
Maxwell’s equations. 

Introduce an anti-symmetric tensor Fab with components (in a local 
inertial frame)
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This is called the electromagnetic field tensor.
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We also define the current density four vector;

With these definitions, Maxwell’s equations can be written

(

Note: We have “cheated” a little here… Strictly speaking we should have 
written the equations using partial derivatives (in the local inertial frame). 

We are making use of the fact that if you know that a tensorial relation is 
valid in one coordinate system, then it is generally valid. 

This allows us to simply replace the partial derivatives with covariant ones 
to get the curved spacetime form of the equations. 
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Sanity check:

Let us verify that these strange looking equations do, indeed, correspond 
to Maxwell’s equations. Start by considering

in a local inertial frame, i.e. a Cartesian coordinate system. 

The time component leads to

Meanwhile, the three space components give us

For i=1=x, we have

Recognize this as the x-component of
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Another sanity check:

Next have a look at

This seems very complicated, but… due to the anti-symmetry of Fab there 
are in fact only 4 equations.

Take a=0 to get

See that b or c cannot be 0. Also… they must be different. Take b=x, c=y to 
get

Recognize this as the z-component of

Finally, take a=x to get the final equation
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In general relativity, all energy and stress affect the spacetime geometry. 
This means that an electromagnetic field will be coupled to the curvature. 

To describe this, we need the energy-momentum tensor

This is a complicated object, but some of the components may be familiar. 

The energy density is

We also have the momentum density;

which is known as the Poynting vector.

Energy-momentum tensor
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It is often useful to have a potential formulation for the electromagnetic 
field. We arrive at this by introducing a four vector Aa such that

Using this we see that

ab b a a bF A A= ∇ −∇

Vector potential
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Working in vacuum (ja=0) and Lorentz gauge,                     , we have the 
wave equation;

This shows that electromagnetic signals propagate as waves, and also 
gives us an idea of how the spacetime curvature affects the waves.
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2a a ca
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Before we conclude the discussion about electromagnetism, let us take a 
brief look at the propagation of electromagnetic waves (=light) in vacuum.

We do this in the context of “geometric optics”, i.e. we assume that the 
amplitude of the wave, Aab, varies slowly compared to the phase S. 

Then we can write

To leading order in a small ε expansion we get

where we have defined the wave vector .

/ ( )iS
ab abF A e Oε

Wave propagation

ε= +

0      0       transverse waveab ab
b bF k A∇ = → = →

a ak S= ∇
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We also have

Multiply this by ka to get

Hence, it follows that

or

Light moves along null geodesics.

0     =0 a bc c ab b ca a bc c ab b caF F F k A k A k A∇ +∇ +∇ = → + +

( ) 0     0   wave vector is nulla a
a bc ak k A k k= → =

Finally, note that
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We now have an idea of how the spacetime curvature (i.e. gravity) affects 
light propagation. This leads to the notion of gravitational lensing.

Gravitational lensing
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Can get multiple images…

or rings (at least segments of)…
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Lensing observations can be used to map the mass distribution in the 
Universe.

This is a powerful probe of dark matter.
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