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Consider the simplest example; a gas of non-interacting particles (density 
but no pressure). In relativity this is commonly called “dust”…

Let xa(τ) be the world lines of the particles (parameterised by proper time);

Dust

a
a dxu

dτ
=

If ρ0 is the proper density of the dust 
(density measured by a co-moving observer) 
then the simplest 2nd rank tensor that we 
can form is

This is the energy-momentum tensor for 
dust.

0
ab a bT u uρ=
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What does this tell us?

First of all, we see that the energy density is [recall         ]

Interpret this;

see that T00 is the density measured by an observer at rest.

00 2
0T ρ γ=

2 20*
0 0

*

   and         mV mm m V
V V

γ ρ γ γ ρ
γ

= = ⇒ = = =

(1, )a iu vγ=

In general,

is the energy density measured by an observer moving with four-velocity ua.

a b
abu u T
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Similarly, we have

or

which is the energy-momentum density measured by an observer at rest.

0 0 2
0 0 (1, ) (1, ) ( , )b b i i iT u u v v vρ γ ρ ρ ρ ρ= = = =

( )0 density, momentum densitybT =

In general,

is the momentum density measured by an observer moving with four-
velocity ua.

  a b
au T
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The dynamics is described by                    .

This leads to

Contract this with ub to get

Now use this in (#) to see that

or

which shows that dust particles move along geodesics.

Note: This is one of the assumptions of GR – test particles move on 
geodesics.

0ab
aT∇ =

0 0 0( ) ( )                              (#)a b b a a b
a a au u u u u uρ ρ ρ∇ = ∇ + ∇

( )0 0 0 0

0

( ) ( ) 0b a a b a a b
b a a a b au u u u u u u u uρ ρ ρ ρ

=

⎡ ⎤∇ + ∇ = ∇ + ∇ =⎣ ⎦

0 0a
a bu uρ ∇ =

2

2 0
a a b

a
bc

d x dx dx
d d dτ τ τ

+ Γ =
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In real fluids, the particles interact. Particle scattering provides a pressure 
on surfaces and interparticle scattering leads to viscosity (friction). The 
simplest generalisation of relativistic dust is called a “perfect” fluid. 

We still neglect viscosity, but account for the pressure p.

The energy-momentum tensor for a perfect fluid can be written

Perfect fluid

As before, ρ0 is the proper density and p is the proper pressure. 

Note: This is the simplest rank 2 tensor that we can form out of the four 
velocity and the metric. 

In the rest frame (co-moving) we have

( )0
ab a b abT p u u pgρ= + −

( )

0

0

0 0 0
0 0 0
0 0 0
0 0 0

ab a b ab p
T p u u p

p
p

ρ

ρ η

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − =
⎜ ⎟
⎜ ⎟
⎝ ⎠
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It is useful to note that we can rearrange the terms in the energy-
momentum tensor to get

This defines the projection .

Projection

What is this good for?

Noting that 

we see that the pressure term is orthogonal to the  four-velocity.

Just like we can use contraction to work out the component along a given 
four-velocity, we can use the projection to work out the orthogonal piece.

Let’s have a look at an example.

( )0 0
ab a b ab a b a b abT u u p g u u u u pρ ρ= − − = − ⊥

ab⊥

( ) ( )
1

0ab ab a b b a b
a a au u g u u u u u u

=

⊥ = − = − =
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As in the case of dust, the equations of motion follow from

In this case we get

Contract this with ub to get 

To see that this is what we expected, we need a little bit of 
thermodynamics… Assuming that ρ0=ρ0(n), we have the chemical potential

0ab
aT

Relativistic Euler equations
∇ =

( )
( ) ( )
0

0 0         0

ab a b ab
a a

b a a b ba
a a a

T p u u pg

u p u p u u g p

ρ

ρ ρ

⎡ ⎤∇ = ∇ + − =⎣ ⎦
⎡ ⎤= ∇ + + + ∇ − ∇ =⎣ ⎦

( ) ( ) ( )0 0 0

1

0
a

b a ba a a
b a b a a a

u

u u p u u g p u p uρ ρ ρ
==

⎡ ⎤∇ + − ∇ = ∇ + + ∇ =⎣ ⎦

0   and the identity        n p
n
ρμ μ ρ∂

= = + ⇒
∂

( ) 0      0a a a a
a a a au n n u nu nμ μ μ∇ + ∇ = ∇ = ⇒ ∇ =

The particle flux is conserved.
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Let us now consider the projection orthogonal to the four velocity;

( ) ( )0 0

0

0
a
c

ab b a a b ba
cb a cb a cb a cb aT u p u p u u g pρ ρ

= =⊥

⎡ ⎤⊥ ∇ = ⊥ ∇ + + ⊥ + ∇ −⊥ ∇ =⎣ ⎦

Introducing the four acceleration

and noting that

we can write the equation in a form that reminds us of Newton’s second 
law;

Pressure gradients drive changes in the four-acceleration.

Perfect fluids do not “move” on geodesics.

Note: The derivative                 is purely spatial.

a b a
ba u u= ∇

( )a b a b a
cb a cb c b a a cu u g u u u u u u⊥ ∇ = − ∇ = ∇

( )0
a

c c ap a pρ + =⊥ ∇

a
c a⊥ ∇
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